首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel Ni‐based metal–organic framework (Ni‐MOF) with a Schiff base ligand as an organic linker, Ni3(bdda)2(OAc)2?6H2O (H2bdda = 4,4′‐[benzene‐1,4‐diylbis(methylylidenenitrilo)]dibenzoic acid), was synthesized and characterized using powder X‐ray powder diffraction, thermogravimetric analysis, Brunauer–Emmett–Teller measurements, inductively coupled plasma atomic emission spectroscopy, transmission electron microscopy, elemental analysis and Fourier transform infrared spectroscopy. The synthesized Ni‐MOF exhibited a high catalytic activity in benzyl alcohol oxidation using tert‐butyl hydroperoxide under solvent‐free conditions. Also, the efficiency of the catalyst was investigated in the cascade reaction of oxidation–Knoevanagel condensation under mild conditions. The Ni‐MOF catalyst could be recovered and reused four times without significant reduction in its catalytic activity.  相似文献   

2.
The application of ammonium borane (AB) as a hydrogen storage material is limited by the sluggish kinetics of H2 release. Two catalysts based on metal–organic frameworks (MOFs) have been prepared either by applying MOF as precursors or by the in situ reduction method. In the release of H2 from AB, the high H2 content of the whole system, the remarkably lower reaction onset temperature, the significantly increased H2 release rates at ≤90 °C, and the decreased reaction exothermicity have all been achieved with only 1.0 mol % MOF‐based catalyst. Moreover, the clear catalytic diversity of three catalysts has been observed and discussed. The in situ synthesized Ni0 sites and the MOF supports in the catalysts were proven to show significant and different effects to promote the catalytic activities. With MOF‐based catalysts, both the enhanced kinetics and the high H2 capacity of the AB system present great advantages for future use.  相似文献   

3.
Successful deposition of Pd nanoparticles is described using MOF‐199 as a support. Various characterization techniques including FTIR, XRD, SEM, BET‐BJH, TG‐DTA, and NH3‐TPD were used to verify the efficiency of catalysts. Pd/MOF‐199 is utilized as a catalyst for Suzukie Miyaura reactions with reasonable to excellent reaction yields under reflux conditions in H2O: ethanol solvent.  相似文献   

4.
A new metal–organic framework (MOF), [Zn(ATA)(bpd)] ( 1Zn ) (ATA: 2‐aminoterephthalic acid; bpd: 1,4‐bis(4‐pyridyl)‐2,3‐diaza‐1,3‐butadiene), exhibiting a three‐dimensional extended porous structure was successfully assembled in a MeOH–H2O solvent system. Under various controlled conditions, 1Zn was obtained in a variety of morphologies such as microspheres, microblocks, microsheets, microplates and microrods. The catalytic performance of the 1Zn microsized MOF was evaluated, and a possible catalytic mechanism was proposed. The flexibility of this MOF assembly strategy for shape control will certainly enhance new potential applications of micro?/nano?MOFs.  相似文献   

5.
Solid‐state crystallization achieves selective confinement of metal–organic framework (MOF) nanocrystals within mesoporous materials, thereby rendering active sites more accessible compared to the bulk‐MOF and enhancing the chemical and mechanical stability of MOF nanocrystals. (Zr)UiO‐66(NH2)/SiO2 hybrid materials were tested as efficient and reusable heterogeneous catalysts for the synthesis of steroid derivatives, outperforming the bulk (Zr)UiO‐66(NH2) MOF. A clear correlation between the catalytic activity of the dispersed Zr sites present in the confined MOF, and the loading of the mesoporous SiO2, is demonstrated for steroid transformations.  相似文献   

6.
The catalytic efficiency of ammonium dihydrogenphosphate was evaluated in the two heterogeneous forms of NH4H2PO4/MCM‐48 and NH4H2PO4/MCM‐41, as mesoporous catalysts, in the solvent free synthesis of 3,4‐dihydropyrimidin‐2(1H)‐ones through one‐pot three‐component condensation of ethyl acetoacetate, an aryl aldehyde and urea. Different reaction parameters including catalytic efficacy, solvent effect, and urea concentration are considered.  相似文献   

7.
Juyan Liu  Qian Liu  Wei Xu  Weilu Wang 《中国化学》2011,29(8):1739-1744
A new and efficient method for the synthesis of benzoxazoles, benzothiazoles, benzimidazoles from reactions of o‐substituted aminoaromatics with orthoesters in the presence of catalytic amounts of Ga(OTf)3 under solvent‐free conditions is presented. The remarkable features of this new protocol are high conversion, very short reaction times, cleaner reaction profiles under solvent‐free conditions, straight forward procedure, and use of relatively non‐toxic catalysts.  相似文献   

8.
Crystalline solid materials are platforms for the development of effective catalysts and have shown vast benefits at the frontiers between homogeneous and heterogeneous catalysts. Typically, these crystalline solid catalysts outperformed their homogeneous analogs due to their high stability, selectivity, better catalytic activity, reusability and recyclability in catalysis applications. This point of view, comprising significant features of a new class of porous crystalline materials termed as metal‐organic frameworks (MOFs) engendered the attractive pathway to synthesize functionalized heterogeneous MOF catalysts. The present review includes the recent research progress in developing both hydrogen‐bond donating (HBD) MOF catalysts and MOF‐supported single‐site catalysts (MSSCs). The first part deals with the novel designs of urea‐, thiourea‐ and squaramide‐containing MOF catalysts and study of their crucial role in HBD catalysis. In the second part, we discuss the important classification of MSSCs with existing examples and their use in desired catalytic reactions. In addition, we describe the relative catalytic efficiency of these MSSCs with their homogeneous and similarly reported analogs. The precise knowledge of discussed heterogeneous MOF catalysts in this review may open the door for new research advances in the field of MOF catalysis.  相似文献   

9.
In this work, we prepared high‐performance and recyclable nanocatalysts that consist of small and well‐dispersed silver nanoparticles (Ag NPs) immobilized onto Cu‐ based metal–organic framework (MOF‐199 s) supported by carboxymethylated cellulose fibers (CCFs). The as‐prepared green nanohybrid catalysts, namely Ag NPs@ MOF‐199 s/CCFs, were characterized using SEM, TEM, XRD and FT‐IR techniques. The catalytic performances showed that Ag NPs@ MOF‐199 s/CCFs catalysts exhibited a very high catalytic efficiency towards the reduction of 4‐nitrophenol to 4‐aminophenol. The enhanced catalytic performances are attributed to the improved dispersity, small particles of Ag NPs stabilized by the MOF‐199 s, and the porous catalyst structures. The introduction of cellulose fiber further facilitates the reuse and sustainability of the nanohybrid catalysts, showing a stable and high reusability (more than 91% of catalytic activity) even after five runs.  相似文献   

10.
Metal–organic frameworks (MOFs) are a promising class of nanoporous polymeric materials. However, the processing of such fragile crystalline powders into desired shapes for further applications is often difficult. A photoinduced postsynthetic polymerization (PSP) strategy was now employed to covalently link MOF crystals by flexible polymer chains, thus endowing the MOF powders with processability and flexibility. Nanosized UiO‐66‐NH2 was first functionalized with polymerizable functional groups, and its subsequent copolymerization with monomers was easily induced by UV light under solvent‐free and mild conditions. Because of the improved interaction between MOF particles and polymer chains, the resulting stand‐alone and elastic MOF‐based PSP‐derived membranes possess crack‐free and uniform structures and outstanding separation capabilities for CrVI ions from water.  相似文献   

11.
A new route to lactide, which is a key building block of the bioplastic polylactic acid, is proposed involving a continuous catalytic gas‐phase transesterification of renewable alkyl lactates in a scalable fixed‐bed setup. Supported TiO2/SiO2 catalysts are highly selective to lactide, with only minimal lactide racemization. The solvent‐free process allows for easy product separation and recycling of unconverted alkyl lactates and recyclable lactyl intermediates. The catalytic activity of TiO2/SiO2 catalysts was strongly correlated to their optical properties by DR UV/Vis spectroscopy. Catalysts with high band‐gap energy of the supported TiO2 phase, indicative of a high surface spreading of isolated Ti centers, show the highest turnover frequency per Ti site.  相似文献   

12.
Palladium nanoparticles have been immobilized into an amino‐functionalized metal–organic framework (MOF), MIL‐101Cr‐NH2, to form Pd@MIL‐101Cr‐NH2. Four materials with different loadings of palladium have been prepared (denoted as 4‐, 8‐, 12‐, and 16 wt %Pd@MIL‐101Cr‐NH2). The effects of catalyst loading and the size and distribution of the Pd nanoparticles on the catalytic performance have been studied. The catalysts were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier‐transform infrared (FTIR) spectroscopy, powder X‐ray diffraction (PXRD), N2‐sorption isotherms, elemental analysis, and thermogravimetric analysis (TGA). To better characterize the palladium nanoparticles and their distribution in MIL‐101Cr‐NH2, electron tomography was employed to reconstruct the 3D volume of 8 wt %Pd@MIL‐101Cr‐NH2 particles. The pair distribution functions (PDFs) of the samples were extracted from total scattering experiments using high‐energy X‐rays (60 keV). The catalytic activity of the four MOF materials with different loadings of palladium nanoparticles was studied in the Suzuki–Miyaura cross‐coupling reaction. The best catalytic performance was obtained with the MOF that contained 8 wt % palladium nanoparticles. The metallic palladium nanoparticles were homogeneously distributed, with an average size of 2.6 nm. Excellent yields were obtained for a wide scope of substrates under remarkably mild conditions (water, aerobic conditions, room temperature, catalyst loading as low as 0.15 mol %). The material can be recycled at least 10 times without alteration of its catalytic properties.  相似文献   

13.
2‐Substituted benzimidazoles have been synthesized in excellent yields under solvent‐free conditions using a series of acidic ionic liquids as catalysts. The results indicate that SO3H‐functionalized ionic liquids show higher catalytic activities than other acidic ionic liquids. The effects of reaction conditions such as the amounts of ionic liquids, the ratio of reactants were investigated. A Hammett method was used to determine the acidity order of these ionic liquids and the results were found to be relevant to the catalytic activities observed in the synthesis reaction. Besides, the reaction mechanism was stimulated using DFT method.  相似文献   

14.
Piperazine‐functionalized nickel ferrite (NiFe2O4) nanoparticles were synthesized as recoverable heterogeneous base catalysts using a routine method. The synthesized materials were characterized using various spectroscopic techniques such as infrared, X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray, thermogravimetry analysis, and vibrating sample magnetometry. Catalytic efficiency was investigated in the synthesis of 2‐amino‐4H‐chromene derivatives via a one‐pot three component reaction of aldehyde and malononitrile with β or α‐naphthol/5‐methyle resorcinol under solvent‐free conditions with good to high yields. This method is operationally simple and has several advantages such as good to high yield, short reaction times, solvent‐free conditions, and easy synthesis. Moreover, the catalyst was recovered easily using an external magnet and reused three times without distinctive loss in catalytic activity.  相似文献   

15.
Cyclization of propargylic alcohols with CO2 is an important reaction in industry, and noble‐metal catalysts are often employed to ensure the high product yields under environmentally friendly conditions. Herein a porous noble‐metal‐free framework 1 with large 1D channels of 1.66 nm diameter was synthesized for this reaction. Compound 1 exhibits excellent acid/base stability, and is even stable in corrosive triethylamine for one month. Catalytic studies indicate that 1 is an effective catalyst for the cyclization of propargylic alcohols and CO2 without any solvents under mild conditions, and the turnover number (TON) can reach to a record value of 14 400. Furthermore, this MOF catalyst also has rarely seen catalytic activity when the biological macromolecule ethisterone was used as a substrate. Mechanistic studies reveal that the synergistic catalytic effect between CuI and InIII plays a key role in the conversion of CO2.  相似文献   

16.
Under microwave irradiation and solvent‐free conditions, rare‐earth metal chlorides (RECl3) have been efficient catalysts for one‐pot synthesis of quinoline derivatives to give products in good to excellent yields through the multi‐component reactions of aldehydes, amines, and alkynes. The rare‐earth metal chlorides can be recycled for six times without notable loss of catalytic activities. This new synthetic approach has prominent features of a short reaction time, high yields of products, operational simplicity, broad substrate scopes, environmentally friendly property and commercially available catalysts. It extends the applications of rare‐earth metal compounds as catalysts in organic synthesis.  相似文献   

17.
The multidentate ligand H2 L upon complexation with Zn (II) and Cd (II) provide a one‐dimensional polymeric networks. These coordination polymers (CPs) CP‐1 and CP‐2 containing Zn (II) and Cd (II) metals respectively are well characterized. The single crystal structural analysis confirms the formation of one‐dimensional coordination polymer with zigzag fashion in CP‐1 and ladder chain CP‐2 . Both the CPs are applied as catalysts to synthesize various cyclic carbonates from epoxides and carbon dioxide. The catalysts are giving better conversion under solvent‐free and additive‐free condition using 10 bar CO2 and 100 °C as optimized pressure and temperature. The detailed kinetic experiments suggesting the first order kinetics, the energy of activation (Ea) is calculated for this catalytic conversion.  相似文献   

18.
An eco‐efficient one‐pot three component reaction between different aldehydes or ketones with alkynes and amines for the synthesis of propargylamines was performed using Fe3O4@TiO2/Cu2O as a nano‐magnetic composite under solvent free condition. The catalyst showed remarkable catalytic activity by decreasing the time of the reaction in comparison of other reported magnetic catalysts. In addition, the Fe3O4@TiO2/Cu2O can be easily recycled and reutilized for five times without apparent loss of catalytic activity.  相似文献   

19.
N‐doped carbon materials represent promising metal‐free electrocatalysts for the oxygen reduction reaction (ORR), the cathode reaction in fuel cells, metal–air batteries, and so on. A challenge for optimizing the ORR catalytic activities of these electrocatalysts is to tune their local structures and chemical compositions in a rational and controlled way that can achieve the synergistic function of each factor. Herein, we report a tandem synthetic strategy that integrates multiple contributing factors into an N‐doped carbon. With an N‐containing MOF (ZIF‐8) as the precursor, carbonization at higher temperatures leads to a higher degree of graphitization. Subsequent NH3 etching of this highly graphitic carbon enabled the introduction of a higher content of pyridine‐N sites and higher porosity. By optimizing these three factors, the resultant carbon materials displayed ORR activity that was far superior to that of carbon derived from a one‐step pyrolysis. The onset potential of 0.955 V versus a reversible hydrogen electrode (RHE) and the half‐wave potential of 0.835 V versus RHE are among the top ranks of metal‐free ORR catalysts and are comparable to commercial Pt/C (20 wt %) catalysts. Kinetic studies revealed lower H2O2 yields, higher electron‐transfer numbers, and lower Tafel slopes for these carbon materials compared with that derived from a one‐step carbonization. These findings verify the effectiveness of this tandem synthetic strategy to enhance the ORR activity of N‐doped carbon materials.  相似文献   

20.
A UiO‐66‐NCS MOF was formed by postsynthetic modification of UiO‐66‐NH2. The UiO‐66‐NCS MOFs displays a circa 20‐fold increase in activity against the chemical warfare agent simulant dimethyl‐4‐nitrophenyl phosphate (DMNP) compared to UiO‐66‐NH2, making it the most active MOF materials using a validated high‐throughput screening. The ?NCS functional groups provide reactive handles for postsynthetic polymerization of the MOFs into functional materials. These MOFs can be tethered to amine‐terminated polypropylene polymers (Jeffamines) through a facile room‐temperature synthesis with no byproducts. The MOFs are then crosslinked into a MOF–polythiourea (MOF–PTU) composite material, maintaining the catalytic properties of the MOF and the flexibility of the polymer. This MOF–PTU hybrid material was spray‐coated onto Nyco textile fibers, displaying excellent adhesion to the fiber surface. The spray‐coated fibers were screened for the degradation of DMNP and showed durable catalytic reactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号