首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymer nanoparticulate drug delivery systems that respond to reactive oxygen species (ROS) and glutathione (GSH) simultaneously at biologically relevant levels hold great promise to improve the therapeutic efficacy to cancer cells with reduced side effects of chemo drugs. Herein, a novel redox dual‐responsive amphiphilic block copolymer (ABP) that consists of a hydrophilic poly (ethylene oxide) block and a hydrophobic block bearing disulfide linked phenylboronic ester group as pendant is synthesized, and the DOX loaded nanoparticles (BSN‐DOX) based on ABPs with varied hydrophobic block length are fabricated for DOX delivery. The self‐immolative leaving reaction of phenylboronic ester triggered by extracellular ROS and the cleavage of disulfide linkages induced by intracellular GSH both lead to rapid DOX release from BSN‐DOX, resulting in an on‐demand DOX release. Moreover, BSN‐DOX show better tumor inhibition and lower side effects in vivo compared with free drug.  相似文献   

2.
Four types of drug nanoparticles (NPs) based on amphiphilic hyperbranched block copolymers were developed for the delivery of the chemotherapeutic doxorubicin (DOX) to breast cancer cells. These carriers have their hydrophobic interior layer composed of the hyperbranched aliphatic polyester, Boltorn® H30 or Boltorn® H40, that are polymers of poly 2,2‐bis (methylol) propionic acid (bis‐MPA), while the outer hydrophilic shell was composed of about 5 poly(ethylene glycol) (PEG) segments of 5 or 10 kDa molecular weight. A chemotherapeutic drug DOX, was further encapsulated in the interior of these polymer micelles and was shown to exhibit a controlled release profile. Dynamic light scattering and transmission electron microscopy analysis confirmed that the NPs were uniformly sized with a mean hydrodynamic diameter around 110 nm. DOX‐loaded H30‐PEG10k NPs exhibited controlled release over longer periods of time and greater cytotoxicity compared with the other materials developed against our tested breast cancer cell lines. Additionally, flow cytometry and confocal scanning laser microscopy studies indicated that the cancer cells could internalize the DOX‐loaded H30‐PEG10k NPs, which contributed to the sustained drug release, and induced more apoptosis than free DOX did. These findings indicate that the H30‐PEG10k NPs may offer a very promising approach for delivering drugs to cancer cells. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

3.
A novel multifunctional amphiphilic graft copolymer has been synthesized consisting of a biodegradable poly(l ‐aspartic acid) backbone that was decorated by water‐soluble poly(ethylene glycol) (PEG) and pH‐responsive poly(N,N‐diethylaminoethyl methacrylate) (PDEAEMA) side‐chains as well as thiol pendant groups. This graft copolymer together with doxorubicin (DOX) formed micelles in water at pH = 10.0 with PDEAEMA and DOX acting as the core and PEG serving as the micellar corona. Upon oxidation, the thiol groups dimerized to form disulfide bonds, thus “locking in” the micellar structure. These crosslinked micelles expanded as the pH was decreased from 7.4 to 5.0 or upon the addition, at pH = 7.4, of glutathione (GSH), a thiol‐containing oligopeptide that is present in cancerous cells and cleaves disulfide bonds. At pH = 5.0, GSH addition triggered the disassembly of the micelles. The expansion and disassembly of the micelles have been determined via in vitro experiments to evaluate their DOX release behavior. More importantly, the graft copolymer micelles could enter cells by means of endocytosis and deliver DOX to the nuclei of ovarian cancer BEL‐7402 cells. Thus, this polymer and its micelles are promising candidates for drug delivery applications. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1536–1546  相似文献   

4.
A novel type of bioreducible amphiphilic multiarm hyperbranched copolymer (H40-star-PLA-SS-PEG) based on Boltorn® H40 core, poly(l-lactide) (PLA) inner-shell, and poly(ethylene glycol) (PEG) outer-shell with disulfide-linkages between the hydrophobic and hydrophilic moieties was developed as unimolecular micelles for controlled drug release triggered by reduction. The obtained H40-star-PLA-SS-PEG was characterized in detail by nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), gel permeation chromatography (GPC), differential scanning calorimeter (DSC), and thermal gravimetric analysis (TGA). Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analyses suggested that H40-star-PLA-SS-PEG formed stable unimolecular micelles in aqueous solution with an average diameter of 19 nm. Interestingly, these micelles aggregated into large particles rapidly in response to 10 mM dithiothreitol (DTT), most likely due to shedding of the hydrophilic PEG outer-shell through reductive cleavage of the disulfide bonds. As a hydrophobic anticancer model drug, doxorubicin (DOX) was encapsulated into these reductive unimolecular micelles. In vitro release studies revealed that under the reduction-stimulus, the detachment of PEG outer-shell in DOX-loaded micelles resulted in a rapid drug release. Flow cytometry and confocal laser scanning microscopy (CLSM) measurements indicated that these DOX-loaded micelles were easily internalized by living cells. Methyl tetrazolium (MTT) assay demonstrated a markedly enhanced drug efficacy of DOX-loaded H40-star-PLA-SS-PEG micelles as compared to free DOX. All of these results show that these bioreducible unimolecular micelles are promising carriers for the triggered intracellular delivery of hydrophobic anticancer drugs.  相似文献   

5.
Novel amphiphilic copolymers based on poly(ε-caprolactone) (PCL) and hyperbranched poly (amine-ester) (HPAE) with various compositions were synthesized. The amphiphilic copolymers can self-assemble into nanoscopic micelles and their hydrophobic cores can encapsulate doxorubicin (DOX) in aqueous solutions. The DOX-loaded HPAE-co-PCL nanoparticles diameter increased from 121 to 184 nm with the increasing PCL segment in the copolymer composition. An in vitro study at 37°C demonstrated that DOX-release from nanoparticles at pH 5.0 was much faster than that at pH 7.4. The cytotoxicity for HeLa cells study demonstrated that DOX-loaded HPAE-co-PCL nanoparticles exhibited the anti-tumor effect was enhanced significantly, suggesting that the DOX-loaded HPAE-co-PCL nanoparticles have great potential as a tumor drug carrier.  相似文献   

6.
Biodegradable amphiphilic ABC Y‐shaped triblock copolymer (MPBC) containing PEG, PBLA, and PCL segments was synthesized via the combination of enzymatic ring‐opening polymerization (ROP) of epsilon‐caprolactone, ROP of BLA‐N‐carboxyanhydride and click chemistry, where PEG, PBLA, and PCL are poly(ethylene glycol), poly(benzyl‐l ‐aspartate), and polycaprolactone, respectively. Propynylamine was employed as ROP initiator for the preparation of alkynyl‐terminated PBLA and methyloxy‐PEG with hydroxyl and azide groups at the chain‐end was used as enzymatic ROP initiator for synthesis of monoazido‐midfunctionalized block copolymer mPEG‐b‐PCL. The subsequent click reaction led to the formation of Y‐shaped asymmetric heteroarm terpolymer MPBC. The polymer structures were characterized by different analyses. The MPBC terpolymer self‐assembled into micelles and physically encapsulated drug doxorubicin (DOX) to form DOX‐loaded micelles, which showed good stability and slow drug release. In vitro cytotoxicity study indicated that the MPBC micelles were nontoxic and the DOX‐loaded micelles displayed obvious anticancer activity similar to free DOX against HeLa cells. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3346–3355  相似文献   

7.
Redox‐responsive core cross‐linked (CCL) micelles of poly(ethylene oxide)‐b‐poly(furfuryl methacrylate) (PEO‐b‐PFMA) block copolymers were prepared by the Diels‐Alder click‐type reaction. First, the PEO‐b‐PFMA amphiphilic block copolymer was synthesized by the reversible addition‐fragmentation chain transfer polymerization. The hydrophobic blocks of PFMA were employed to encapsulate the doxorubicin (DOX) drug, and they were cross‐linked using dithiobismaleimidoethane at 60 °C without any catalyst. Under physiological circumstance, the CCL micelles demonstrated the enhanced structural stability of the micelles, whereas dissociation of the micelles took place rapidly through the breaking of disulfide bonds in the cross‐linking linkages under reduction environment. The core‐cross‐linked micelles showed fine spherical distribution with hydrodynamic diameter of 68 ± 2.9  nm. The in vitro drug release profiles presented a slight release of DOX at pH 7.4, while a significant release of DOX was observed at pH 5.0 in the presence of 1,4‐dithiothreitol. MTT assays demonstrated that the block copolymer did not have any practically cytotoxicity against the normal HEK293 cell line while DOX‐loaded CCL micelles exhibited a high antitumor activity towards HepG2 cells. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3741–3750  相似文献   

8.
A novel amphiphilic ABA‐type triblock copolymer poly(ethylene glycol)‐b‐poly(ethanedithiol‐alt‐nitrobenzyl)‐b‐poly(ethylene glycol) (PEG‐b‐PEDNB‐b‐PEG) is successfully prepared by sequential thiol‐acrylate Michael addition polymerization in one pot. PEG‐b‐PEDNB‐b‐PEG is designed to have light‐cleavable o‐nitrobenzyl linkages and acid‐labile β‐thiopropionate linkages positioned repeatedly in the main chain of the hydrophobic block. The light and pH dual degradation of PEG‐b‐PEDNB‐b‐PEG is traced by gel permeation chromatography (GPC). Such triblock copolymer can self‐assemble into micelles, which can be used to encapsulate anticancer drug doxorubicin (DOX). Because of the different degradation chemistry of o‐nitrobenzyl linkages and β‐thiopropionate linkages, DOX can be released from the micelles by two different manners, i.e., light‐induced rapid burst release and pH‐induced slow sustained release. Confocal laser scanning microscopy (CLSM) results indicated that DOX‐loaded micelles exhibited faster drug release in A549 cells after UV irradiation. Furthermore, 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) results show that the DOX‐loaded micelles under UV light degradation exhibit better anticancer activity against A549 cells than that of the nonirradiated ones.

  相似文献   


9.
pH敏感型mPEG-Hz-PLA聚合物纳米载药胶束的制备   总被引:1,自引:0,他引:1  
以合成的含有腙键的聚乙二醇大分子(mPEG-Hz-OH)为引发剂,以丙交酯为单体引发开环聚合反应,并通过调整投料比,制备出3种不同分子量的含腙键的生物可降解嵌段聚合物(mPEG-Hz-PLA).将腙键引入到聚合物的骨架中,以此构建聚合物胶束并作为pH敏感型纳米药物载体.制备的pH敏感型胶束的CMC值等于或低于5.46×10-4 mg/m L,DLS和TEM显示粒径均小于100 nm,且粒径分布均匀.非pH敏感型胶束在不同pH下的粒径变化不明显,而pH敏感型胶束在酸性环境下(pH=4.0和pH=5.0)胶束粒径出现了明显变化.以阿霉素为模型药物制备了pH敏感型载药胶束,其粒径比空白胶束大(100~200 nm),且粒径分布均匀.药物释放实验表明pH敏感型载药胶束随着释放介质pH降低累积释药量增高.MTT实验表明空白胶束对HeLa细胞和RAW264.7细胞几乎没有抑制作用,而载阿霉素的胶束对2种细胞的抑制作用都随着剂量的增大和时间的延长而增强.  相似文献   

10.
In recent decades, diverse drug delivery systems (DDS) constructed by self‐assembly of dendritic peptides have shown advantages and improvable potential for cancer treatment. Here, an arginine‐enriched dendritic amphiphilic chimeric peptide CRRK(RRCG(Fmoc))2 containing multiple thiol groups is programmed to form drug‐loaded nano‐micelles by self‐assembly. With a rational design, the branched hydrophobic groups (Fmoc) of the peptides provide a strong hydrophobic force to prevent the drug from premature release, and the reduction‐sensitive disulfide linkages formed between contiguous peptides can control drug release under reducing stimulation. As expected, specific to multidrug resistance (MDR) tumor cells, the arginine‐enriched peptide/drug (PD) nano‐micelles show accurate nuclear localization ability to prevent the drug being pumped by P‐glycoprotein (P‐gp) in vitro, as well as exhibiting satisfactory efficacy for MDR tumor treatment in vivo. This design successfully realizes stimuli‐responsive drug release aimed at MDR tumor cells via an ingenious sequence arrangement.  相似文献   

11.
A dilemma exists between the circulation stability and cargo release/mass diffusion at desired sites when designing delivery nanocarriers and in vivo nanoreactors. Reported herein are disulfide‐crosslinked (DCL) micelles exhibiting reduction‐triggered switching of crosslinking modules and synchronized hydrophobic‐to‐hydrophilic transition. Tumor cell targeted DCL micelles undergo cytoplasmic milieu triggered disulfide cleavage and self‐immolative decaging reactions at chemically adjustable rates, generating primary amine moieties. Extensive amidation reactions with neighboring ester moieties then occur because of the high local concentration and suppression of the apparent amine pKa value within the hydrophobic cores, thus leading to the transformation of crosslinking modules and formation of tracelessly crosslinked (TCL) micelles, with hydrophilic cores, inside live cells. We further integrate this design principle with theranostic nanocarriers for selective intracellular drug transport guided by enhanced magnetic resonance (MR) imaging performance.  相似文献   

12.
A novel ferrocenium capped amphiphilic pillar[5]arene (FCAP) was synthesized and self‐assembled to cationic vesicles in aqueous solution. The cationic vesicles, displaying low cytotoxicity and significant redox‐responsive behavior due to the redox equilibrium between ferrocenium cations and ferrocenyl groups, allow building an ideal glutathione (GSH)‐responsive drug/siRNA co‐delivery system for rapid drug release and gene transfection in cancer cells in which higher GSH concentration exists. This is the first report of redox‐responsive vesicles assembled from pillararenes for drug/siRNA co‐delivery; besides enhancing the bioavailability of drugs for cancer cells and reducing the adverse side effects for normal cells, these systems can also overcome the drug resistance of cancer cells. This work presents a good example of rational design for an effective stimuli‐responsive drug/siRNA co‐delivery system.  相似文献   

13.
Owing to the naturally high toxicity, poor water solubility, and other side effects of podophyllotoxin (PPT), its applications are limited. To address these issues, we developed a new PPT delivery system, in which the hydrophilic drug methotrexate (MTX) and the hydrophobic drug PPT were linked by a reduction‐responsive disulfide bond to form an amphiphilic drug‐drug conjugate prodrug (MTX‐SS‐PPT). The conjugate could self‐assemble into spherical nanoaggregates in aqueous solution and self‐deliver to tumor tissues. In addition, MTX could target to folate‐receptor‐positive cells. Over‐expression of glutathione in tumor cells broke the disulfide bonds and released the free drug. In vitro and in vivo experiments indicated that the nanodrug could effectively improve the biocompatibility and reduce the toxicity of PPT.  相似文献   

14.
The instability and premature charge reversal at pH 7.4 have become the major limitations of charge‐reversal delivery systems. To address this problem, graft copolymer of poly(butylene succinate)‐g‐cysteamine‐bi‐poly(ethylene glycol) (PBS‐g‐CS‐bi‐PEG, bi = benzoic imine bond) was designed and synthesized through facile thiol‐ene click reaction and subsequent Schiff's base reaction. Then, PBS‐g‐CS‐bi‐PEG and carboxyl‐functionalized polyester of poly(butylene succinate)‐g‐3‐mercaptopropionic acid (PBS‐g‐MPA) co‐assemble in aqueous solution to give PEG shell‐sheddable charge‐reversal micelles with sizes of 85–103 nm and low polydispersity of 0.11–0.12. Interestingly, the PBS‐g‐MPA/CS‐bi‐PEG micelles could sensitively and arbitrarily switch their surface charges between negative and positive status in response to pH fluctuation via reversible protonation and deprotonation of carboxyl and amino groups, which endows the desired stability of co‐assembly micelles either during long‐term storage or under physiological conditions. Doxorubicin (DOX) was loaded into PBS‐g‐MPA/CS‐bi‐PEG micelles with a high drug‐loading content of 10.2% and entrapment efficiency of 68% as a result of electrostatic attraction. In vitro release studies revealed that less than 25% of DOX was released within 24 h in the environment mimicking the physiological condition, whereas up to 81% of DOX was released in 24 h under weak‐acid condition resembling microenvironment in endosome/lysosome. In vitro cytotoxicity study suggested that blank PBS‐g‐MPA/CS‐bi‐PEG micelles possessed excellent biocompatibility, while DOX‐loaded PBS‐g‐MPA/CS‐bi‐PEG micelles showed significant cytotoxicity with half‐maximal inhibitory concentration (IC50) of 1.55–1.67 μg DOX equiv/mL. This study provides a facile and effective approach for the preparation of novel charge‐reversal micelles with switchable charges and excellent biocompatibility, which are highly promising to be used as safe nanocarriers for efficient intracellular drug delivery. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2036–2046  相似文献   

15.
Ultrasound has been recognized as an exciting tool to enhance the therapeutic efficacy in tumor chemotherapy owing to the triggered drug release, facilitated intracellular drug delivery, and improved spatial precision. Aiming for a precise localized drug delivery, novel dendritic polyurethane-based prodrug (DOX-DPU-PEG) was fabricated with a drug content of 18.9% here by conjugating DOX onto the end groups of the functionalized dendritic polyurethane via acid-labile imine bonds. It could easily form unimolecular micelles around 38 nm. Compared with the non-covalently drug-loaded unimolecular micelles (DOX@Ph-DPU-PEG), they showed excellent pH/ultrasound dual-triggered drug release performance, with drug leakage of only 4% at pH 7.4, but cumulative release of 14% and 88% at pH 5.0 without and with ultrasound, respectively. The ultrasound responsiveness was attributed to the unique strawberry-shaped topological structure of the DOX-DPU-PEG, in which DOX was embedded in the skin layer of the hydrophobic DPU cores. With ultrasound, the DOX-DPU-PEG unimolecular micelles possessed enhanced tumor growth inhibition than free DOX but showed no obvious cytotoxicity on the tumor cells without ultrasound. Such feature makes them promising potential for precise localized drug delivery.  相似文献   

16.
Amphiphilic block poly(propylene carbonate)‐block‐allyloxypolyethyleneglycol (PPC‐b‐APEG) copolymer was synthesized by the click chemistry, and its structure were characterized. PPC‐b‐APEG can self‐assemble into micelles without emulsifier in water. Shell cross‐linked micelles were obtained by the reaction of the allyloxy groups, which were exposed on the outer of the PPC‐b‐APEG micelles, and N‐vinylpyrrolidone (NVP). The morphology and size of the micelles before and after cross‐link reactions were characterized. The research result shows that the shell cross‐linking could improve the stability of micelles. The particle size of uncross‐linked micelle was about 800 nm. The size of cross‐linked micelles increased with increasing amount of cross‐linking degree. To better evaluate the release behavior of PPC‐b‐PEG copolymer, doxorubicin (DOX)‐loaded micelles were synthesized using DOX as the model drug. Results showed that the DOX releasing rate decreased with increasing of NVP. The shell cross‐linking do decrease the burst release behaviours of DOX and reduce the DOX release rate.  相似文献   

17.
In this contribution, amphiphilic star copolymers (H40‐star‐PCL‐a‐PEG) with an H40 hyperbranched polyester core and poly(ε‐caprolactone)‐a‐poly(ethylene glycol) copolymer arms linked with acetal groups are synthesized using ring‐opening polymerization and a copper (I)‐catalyzed alkyne‐azide cycloaddition click reaction. The acid‐cleavable acetal groups between the hydrophilic and hydrophobic segments of the arms endow the amphiphilic star copolymers with pH responsiveness. In aqueous solution, unimolecular micelles can be formed with good stability and a unique acid degradability, as is desirable for anticancer drug carriers. For the model drug of doxorubicin, the in vitro release behavior, intracellular release, and inhibition of proliferation of HeLa cells show that the acid‐cleavable unimolecular micelles with anticancer activity can be dissociated in an acidic environment and efficiently internalized by HeLa cells. Due to the acid‐cleavable and biodegradable nature, unimolecular micelles from amphiphilic star copolymers are promising for applications in intracellular drug delivery for cancer chemotherapy.

  相似文献   


18.
Self‐assembled micellar systems designed with multiple stimuli‐responsive degradation have been considered as effective candidates for polymer‐based delivery systems exhibiting enhanced/controlled release. However, most conventional approaches involve the incorporation of single, dual, or multiple cleavable linkages positioned at single locations, as in hydrophobic cores or at core/corona interfaces. Herein, a novel dual location dual reduction and photoresponsive block copolymer containing a disulfide linkage at the block junction and pendant o‐nitrobenzyl thioether (NBS) groups in the hydrophobic methacrylate block (PEG‐ss‐PhvM) are reported, which are synthesized by a combination of controlled radical polymerization and facile coupling reaction. The amphiphilic design of the PEG‐ss‐PhvM enables the formation of self‐assembled micellar aggregates with disulfides at the core/corona interfaces and pendant photocleavable NBS groups in the hydrophobic cores. The dual cleavable linkages respond to each stimulus (GSH or light), exhibiting enhanced release; further to a combination of dual locational stimuli, promoting synergistic release at dual locations.

  相似文献   


19.
The use of natural compounds to construct biomaterials, including delivery system, is an attractive strategy. In the present study, through threading functional α‐cyclodextrins onto the conjugated macromolecules of poly(ethylene glycol) (PEG) and natural compound bile acid, glycopolymers of polyrotaxanes with the active targeting ability are obtained. These glycopolymers self‐assemble into micelles as evidenced by dynamic light scattering and transmission electron microscopy, in which glucosamine, as an example of targeting groups, is introduced. These micelles after loading doxorubicin (DOX) exhibit the selective recognition with cancer cells 4T1. Meanwhile, the maximal half inhibitory concentration is determined to be ≈2.5 mg L?1 for the DOX‐loaded micelles, close to the value of free DOX·HCl (1.9 mg L?1). The cumulative release of DOX at pH 5.5 is faster than at pH 7.4, which may be used as the controlled release system. This drug delivery system assembled by glycopolymers features high drug loading of DOX, superior biocompatibility. The strategy not only utilizes the micellization induced by bile acids, but also overcomes the major limitation of PEG such as the lack of targeting groups. In particular, this drug delivery platform can extend to grafting the other targeting groups, rendering this system more versatile.  相似文献   

20.
Amphiphilic macromolecules (AMs) have unique branched hydrophobic domains attached to linear PEG chains. AMs self‐assemble in aqueous solution to form micelles that are hydrolytically stable in physiological conditions (37 °C, pH 7.4) over 4 weeks. Evidence of AM biodegradability was demonstrated by complete AM degradation after 6 d in the presence of lipase. Doxorubicin (DOX) was chemically conjugated to AMs via a hydrazone linker to form DOX–AM conjugates that self‐assembled into micelles in aqueous solution. The conjugates were compared with DOX‐loaded AM micelles (i.e., physically loaded DOX) on DOX content, micellar sizes and in vitro cytotoxicity. Physically encapsulated DOX loading was higher (12 wt.‐%) than chemically bound DOX (6 wt.‐%), and micellar sizes of DOX‐loaded AMs (≈16 nm) were smaller than DOX–AMs (≈30 nm). In vitro DOX release from DOX–AM conjugates was faster at pH 5.0 (100%) compared to pH 7.4 (78%) after 48 h, 37 °C. Compared to free DOX and physically encapsulated DOX, chemically bound DOX had significantly higher cytotoxicity at 10?7 M DOX dose against human hepatocellular carcinoma cells after 72 h. Overall, DOX–AM micelles showed promising characteristics as stable, biodegradable DOX nanocarriers.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号