首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Emissive β‐diketones (bdks) and difluoroboron complexes (BF2bdks) show multi‐stimuli responsive luminescence in both solution and the solid state. A series of bdk ligands and boron coordinated dyes were synthesized with different cyclic amine substituents in the 4‐position to explore ring size effects on various luminescent properties, including solvatochromism, viscochromism, aggregation‐induced emission (AIE), mechanochromic luminescence (ML) and halochromism. Red‐shifted absorption and emission were observed in CH2Cl2 for both bdk ligands and boron dyes with increasing substituent ring size. The compounds displayed bathochromic emission in more polar solvents, and higher fluorescence intensity in more viscous media. The AIE compounds exhibited enhanced emission when aggregated. For solid‐state properties, a large emission wavelength shift was shown for the piperidine substituted bdk after melt quenching on weighing paper. Large blue‐shifted emissions were observed in all the boron dye spin cast films after trifluoroacetic acid vapor annealing, and the original emissions were partially recovered after triethylamine vapor treatment.  相似文献   

2.
With the aim to develop new tetraphenylethylene (TPE)‐based conjugated hyperbranched polymer, TPE units, one famous aggregation‐induced emission (AIE) active group, are utilized to construct hyperbranched polymers with three other aromatic blocks, through an “A2+B4” approach by using one‐pot Suzuki polycondensation reaction. These three hyperbranched polymers exhibit interesting AIEE behavior and act as explosive chemsensors with high sensitivity both in the nanoparticles and solid states. This is the first report of the AIE activity of the TPE‐based conjugated hyperbranched polymers. Their corresponding PLED devices also demonstrate good performance.  相似文献   

3.
Systematic structural perturbation has been used to fine‐tune and understand the luminescence properties of three new 1,8‐naphthalimides (NPIs) in solution and aggregates. The NPIs show blue emission in the solution state and their fluorescence quantum yields are dependent upon their molecular rigidity. In concentrated solutions of the NPIs, intermolecular interactions were found to quench the fluorescence due to the formation of excimers. In contrast, upon aggregation (in THF / H2O mixtures), the NPIs show aggregation‐induced emission enhancement (AIEE). The NPIs also show moderately high solid‐state emission quantum yields (ca. 10–12.7 %). The AIEE behaviour of the NPIs depends on their molecular rigidity and the nature of their intermolecular interactions. The NPIs 1 – 3 show different extents of intermolecular (π–π and C?H???O) interactions in their solid‐state crystal structures depending on their substituents. Detailed photophysical, computational and structural investigations suggest that an optimal balance of structural flexibility and intermolecular communication is necessary for achieving AIEE characteristics in these NPIs.  相似文献   

4.
Two new supramolecular fluorescent hybrid materials, combining for the first time [M6O19]2? (M=Mo, W) polyoxometalates (POMs) and aggregation‐induced emission (AIE)‐active 1‐methyl‐1,2,3,4,5‐pentaphenyl‐phospholium ( 1+ ), were successfully synthesized. This novel molecular self‐assembling strategy allows designing efficient solid‐state emitters, such as (1)2[W6O19] , by directing favorably the balance between the AIE and aggregation‐caused quenching (ACQ) effects using both anion‐π+ and H‐bonding interactions in the solid state. Combined single‐crystal X‐ray diffraction, Raman, UV‐vis and photoluminescence analyses highlighted that the nucleophilic oxygen‐enriched POM surfaces strengthened the rigidity of the phospholium via strong C?H???O contacts, thereby exalting its solid‐state luminescence. Besides, the bulky POM anions prevented π–π stacking interactions between the luminophores, blocking detrimental self‐quenching effects.  相似文献   

5.
《中国化学会会志》2017,64(10):1190-1196
A series of tetra(biphenyl‐4‐yl)phthalimide (TBPPI ) derivatives with different N‐substituents (n‐butyl, phenyl, p‐methyl phenyl, and p‐acetyl phenyl moieties for compounds 7 – 10 , respectively) were prepared to examine their fluorescent behavior under various conditions. The chemical structure of compound 7 has been successfully confirmed by single crystal X‐ray diffraction analysis. The photoluminescence (PL ) spectra in different ratios of CH 2Cl 2/EtOH mixture solutions revealed that compounds 7 and 8 exhibited both aggregation‐induced emission (AIE ) and aggregation‐caused quenching (ACQ ) behaviors, while compounds 9 and 10 displayed AIE and aggregation‐induced emission enhancement (AIEE ) properties, respectively.  相似文献   

6.
A tetrakis(bisurea)‐decorated tetraphenylethene (TPE) ligand ( L2 ) was designed, which, upon coordination with phosphate ions, displays fluorescence “turn‐on” over a wide concentration range, from dilute to concentrated solutions and to the solid state. The fluorescence enhancement can be attributed to the restriction of the intramolecular rotation of TPE by anion coordination. The crystal structure of the A4L2 (A=anion) complex of L2 with monohydrogen phosphate provides direct evidence for the coordination mode of the anion. This “anion‐coordination‐induced emission” (ACIE) is another approach for fluorescence turn‐on in addition to aggregation‐induced emission (AIE).  相似文献   

7.
To broaden the application of aggregation‐induced emission (AIE) luminogens (AIEgens), the design of novel small‐molecular dyes that exhibit high fluorescence quantum yield (Φfl) in the solid state is required. Considering that the mechanism of AIE can be rationalized based on steric avoidance of non‐radiative decay pathways, a series of bridged stilbenes was designed, and their non‐radiative decay pathways were investigated theoretically. Bridged stilbenes with short alkyl chains exhibited a strong fluorescence emission in solution and in the solid state, while bridged stilbenes with long alkyl chains exhibited AIE. Based on this theoretical prediction, we developed the bridged stilbenes BPST[7] and DPB[7], which demonstrate excellent AIE behavior.  相似文献   

8.
In this work, two rigid, multiple tetraphenylethene (TPE)‐substituted, π‐conjugated, snowflake‐shaped luminophores BT and BPT were facilely synthesized by using a 6‐fold Suzuki coupling reaction. These molecules are constructed based on the nonplanar structure of propeller‐shaped hexaphenylbenzene (HPB) or benzene as core groups and TPE as end groups. As a result, they reserve the intrinsic aggregation‐induced emission (AIE) property of the TPE moiety. Meanwhile, both fluorescence quantum yield and piezochromic behavior in the solid state can be tuned or switched by inserting the phenyl bridges through changing the twisting conformation. The more extended structure BPT showed a much stronger AIE effect and higher ΦF,f in the solid state in comparison with that of BT. Furthermore, an excellent optical waveguide application of these molecules was achieved. However, the revisable piezofluorochromic behavior has only appeared when BT was ground using a pestle and treated with solvent.  相似文献   

9.
Dinitriles bearing aggregation‐induced emission (AIE)‐active moieties [tetraphenylethylene (TPE) or diphenylphenanthrene (DPP)] were prepared. Compounds 4 (TPE‐linked) and 8 (DPP‐linked) showed considerably redshifted emission resulting from their large Stokes shifts and also strong fluorescence in the aggregated and solid states. Pure E and Z stereoisomers of both dinitriles were easily separated, and their isomerization equilibria and fluorescence properties were investigated. In addition to their pronounced AIEE behavior, 4 and 8 also showed various reversible chromic responses to external stimuli, namely, solvato‐, piezo‐, vapo‐, and thermochromism, which make them potential candidates for smart materials.  相似文献   

10.
A series of N-(5-phenyl-1,3,4-thiadiazol-2-yl)benzamide derivatives and their corresponding BF2 complexes were synthesized, and their photophysical properties were determined. The effect of the derivatives with various substituents on the benzamide ring and phenyl-1, 3, 4-thiadiazole ring were examined in different organic solvents and in the solid state. These dyes enjoy a series of excellent photophysical properties including the large Stokes shift, solid-state fluorescence, and aggregation-induced emission effect (AIEE).  相似文献   

11.
Two novel tetrahedral silicon‐centered cyano functionalized silanes, namely bis(4‐cyanophenylethynyl)dimethylsilane ( CN-1 ) and bis(4‐cyanophenylethynyl) diphenylsilane ( CN-2 ), have been synthesized and well characterized. They demonstrated unusual aggregation‐induced emission enhancement (AIEE) properties in the H‐type aggregation state with nanoparticle aggregate formation. Further study shows that the 4‐cyanophenylethynyl unit is the structure base to induce the AIEE phenomenon and the silicon core may enhance the AIEE effect. By single‐crystal analysis, the twisted tetrahedral conformation of silicon core and restricted intramolecular motions are speculated as the AIEE mechanism for these unusual H‐type aggregates of CN-1 and CN-2 . Moreover, both CN-1 and CN-2 show an obvious fluorescent quenching response to 2,4,6‐trinitrotoluene (TNT) in THF solution, making them promising candidates in the application of explosive detection. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Strong aggregation‐caused quenching of perylene diimides (PDI) is changed successfully by simple chemical modification with two quinoline moieties through C?C at the bay positions to obtain aggregation‐induced enhanced emission (AIEE) of a perylene derivative ( Cya‐PDI ) with a large π‐conjugation system. Cya‐PDI is weakly luminescent in the well‐dispersed CH3CN or THF solutions and exhibits an evident time‐dependent AIEE and absorption spectra broadening in the aggregated state. In addition, morphological inspection demonstrates that the morphology of the aggregated form of Cya‐PDI molecules changed from plate‐shaped to rod‐like aggregates under the co‐effects of time and water. An edge‐to‐face arrangement of aggregation was proposed and discussed. The fact that the Cya‐PDI aggregates show a broad absorption covering the whole visible‐light range and strong intermolecular interaction through π–π stacking in the solid state makes them promising materials for optoelectric applications.  相似文献   

13.
An o‐carborane‐based anthracene was synthesized, and single crystals, with incorporated solvent molecules, were obtained from the CHCl3, CH2Cl2, and C6H6 solutions. The anthracene ring in the crystal is highly distorted by the formation of a π‐stacked dimer between the anthracene units. The crystals exhibited a variety of emission behaviors such as aggregation‐induced emission (AIE), crystallization‐induced emission (CIE), aggregation‐caused quenching (ACQ), and multichromism.  相似文献   

14.
Pyridine N‐oxide–BF2CF3 and –BF2C2F5 complexes and their derivatives were synthesized. Most of the complexes show fluorescence both in solution and in the solid state. By expanding the π‐conjugated skeleton, the color of the fluorescence could be changed dramatically. A fluorophore with a high solvent dependency could also be produced. Since such compounds can be synthesized on a gram scale in high yield, and are stable to oxygen, water, and heat, the complexes hold great potential as organic functional materials.  相似文献   

15.
《化学:亚洲杂志》2017,12(17):2207-2210
Tetraphenylethylene (TPE)–carborane hybrids are constructed, and the impact of carborane substituents on the aggregation‐induced emission (AIE) characteristics of TPE‐cores has been investigated. When altering the 2‐R‐group on the carborane unit with ‐H, ‐CH3 or phenyl group, the luminescent quantum yield of the corresponding TPE derivatives can be manipulated from 0.18 to 0.63 in the solid state. The emission color exhibits an obvious 100 nm shift (from blue to yellow).  相似文献   

16.
《化学:亚洲杂志》2017,12(17):2299-2303
Aromatic difluoroboronated β‐diketone ( BF2DK ) derivatives are a widely known class of luminescent organic materials that exhibit high photoluminescent quantum efficiency and unique aggregation‐dependent fluorescence behavior. However, there have been only a few reports on their use in solid‐state electronic devices, such as organic light‐emitting devices (OLEDs). Herein, we investigated the solid‐state properties and OLED performance of a series of π‐extended BF2DK derivatives that have previously been shown to exhibit intense fluorescence in the solution state. The BF2DK derivatives formed exciplexes with a carbazole derivative and exhibited thermally activated delayed fluorescence (TADF) behavior to give orange electroluminescence with a peak external quantum efficiency of 10 % that apparently exceeds the theoretical efficiency limit of conventional fluorescent OLEDs (7.5 %), assuming a light out‐coupling factor of 30 %.  相似文献   

17.
A new conjugated polyelectrolyte containing tetraphenylethene units in the backbone is synthesized and characterized. This polyelectrolyte is water‐soluble and exhibits aggregation‐induced emission (AIE) behavior. It is biocompatible and can be directly used in conventional and fluorescence lifetime imaging of mouse neuroblastoma neuro‐2A cells, providing useful information of cellular morphology and intracellular aggregation or motion. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 672–680  相似文献   

18.
Aggregation‐induced delayed fluorescence (AIDF) can be regarded as a special case of aggregation‐induced emission (AIE). Luminogens with AIDF can simultaneously emit strongly in solid state and fully utilize the singlet and triplet excitons in organic light‐emitting diodes (OLEDs). In this work, two new AIDF luminogens, DMF‐BP‐DMAC and DPF‐BP‐DMAC, with an asymmetric D–A–D′ structure, are designed and synthesized. The characteristics of both luminogens are systematically investigated, including single crystal structures, theoretical calculations, photophysical properties and thermal stabilities. Inspired by their AIDF nature, the green‐emission non‐doped OLEDs based on them are fabricated, which afford good electroluminescence performances, with low turn‐on voltages of 2.8 V, high luminance of 52560 cd m?2, high efficiencies of up to 14.4 %, 42.3 cd A?1 and 30.2 lm W?1, and very small efficiency roll‐off. The results strongly indicate the bright future of non‐doped OLEDs on the basis of robust AIDF luminogens.  相似文献   

19.
A series of 2,5‐distyrylfuran derivatives bearing pentafluorophenyl‐ and cyanovinyl units have been synthesized for aggregation‐induced emission (AIE). The effect of the type and extent of the supramolecular connections on the AIE of the furan derivatives were examined and correlated with their X‐ray crystal structures. It was found that the simultaneous presence of cyano and perfluorophenyl units strongly enhances the fluorescence upon aggregation. Single‐crystal X‐ray diffraction analysis confirmed that C?H???F, F???F, C?H???nitrile, Ar???ArF (Ar=aryl, ArF=fluoroaryl), and nitrile???ArF intra‐ and intermolecular interactions drive the topology of the molecule and that solid‐state supramolecular contacts favor AIE of the furan derivatives.  相似文献   

20.
1‐Cyano‐1,2‐bis(biphenyl)ethene (CNBE) derivatives with a hexa(ethylene glycol) group as an amphiphilic side chain were synthesized and the self‐assembling character and fluorescence behavior were investigated. The amphiphilic derivatives showed aggregate‐induced enhanced emission (AIEE) in water and in the solid state. The fluorescence quantum yield increased as the rigidity of the aggregates increased (i.e., in ethyl acetate<in water<in the solid state). As determined from measurements of fluorescence spectra, fluorescence quantum yields, and fluorescence lifetimes, a key factor for the enhanced emission is suppression of the nonradiative decay process arising from restricted molecular motion. Additionally, the difference in the emission rate constant is not negligible and can be used to interpret the difference in fluorescence quantum yield in water and in the solid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号