首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel method for the asymmetric synthesis of 3,3‐difluoro‐2‐propanoylbicyclo‐[3.3.0]octanes involves an unprecedented intramolecular radical cyclization/ipso‐1,4‐aryl migration cascade.  相似文献   

2.
《化学:亚洲杂志》2017,12(14):1719-1723
A facile construction of quinoline‐2‐carboxylate esters through an aerobic oxidation of alkyl 4‐anilinocrotonates is described. In the presence of dioxygen, sp3 C−H bonds in 4‐anilinocrotonates can easily be oxidized by using a catalytic amount of a radical cation salt, providing a radical intermediate. After further oxidation and domino cyclization, the desired quinoline derivatives were afforded in high yields. This reaction provides a new way to construct the pharmaceutically relevant quinoline skeleton, avoiding harsh reaction conditions and tedious starting material synthesis.  相似文献   

3.
A copper‐catalyzed difunctionalizing trifluoromethylation of activated alkynes with the cheap reagent sodium trifluoromethanesulfinate (NaSO2CF3 or Langlois’ reagent) has been developed incorporating a tandem cyclization/dearomatization process. This strategy affords a straightforward route to synthesis of 3‐(trifluoromethyl)‐spiro[4.5]trienones, and presents an example of difunctionalization of alkynes for simultaneous formation of two carbon–carbon single bonds and one carbon–oxygen double bond.  相似文献   

4.
5.
6.
A general synthetic sequence involving simply prepared starting materials provides rapid access to diverse, novel tricyclic architectures inspired by pleuromutilin. SmII‐mediated radical cyclization cascades of dialdehydes, prepared using a new, one‐pot, copper‐catalyzed double organomagnesium addition to β‐chlorocyclohexenone, proceed with complete sequence selectivity and typically with high diastereocontrol to give analogues of the target core. Our expedient approach (ca. 7 steps) allows non‐traditional, de novo synthetic access to analogues of the important antibacterial that can′t be prepared from the natural product by semisynthesis.  相似文献   

7.
Densely functionalized cyclopentane derivatives with up to four consecutive stereocenters are assembled by a tandem Michael addition/single‐electron transfer oxidation/radical cyclization/oxygenation strategy mediated by ferrocenium hexafluorophosphate, a recyclable, less toxic single‐electron transfer oxidant. Ester enolates were coupled with α‐benzylidene and α‐alkylidene β‐dicarbonyl compounds with switchable diastereoselectivity. This pivotal steering element subsequently controls the diastereoselectivity of the radical cyclization step. The substitution pattern of the radical cyclization acceptor enables a switch of the cyclization mode from a 5‐exo pattern for terminally substituted olefin units to a 6‐endo mode for internally substituted acceptors. The oxidative anionic/radical strategy also allows efficient termination by oxygenation with the free radical 2,2,6,6‐tetramethyl‐1‐piperidinoxyl, and two C?C bonds and one C?O bond are thus formed in the sequence. A stereochemical model is proposed that accounts for all of the experimental results and allows the prediction of the stereochemical outcome. Further transformations of the synthesized cyclopentanes are reported.  相似文献   

8.
An asymmetric conjugate addition of 3‐monosubstituted oxindoles to a range of (E)‐1,4‐diaryl‐2‐buten‐1,4‐diones, catalyzed by commercially available cinchonine, is described. This organocatalytic asymmetric reaction affords a broad range of 3,3′‐disubstituted oxindoles that contain a 1,4‐dicarbonyl moiety and vicinal quaternary and tertiary stereogenic centers in high‐to‐excellent yields (up to 98 %), with excellent diastereomeric and moderate‐to‐high enantiomeric ratios (up to 99:1 and 95:5, respectively). Subsequently, cyclization of the 1,4‐dicarbonyl moiety in the resultant Michael adducts under different Paal–Knorr conditions results in two new kinds of 3,3′‐disubstituted oxindoles—3‐furanyl‐ and 3‐pyrrolyl‐3‐alkyl‐oxindoles—in high yields and good enantioselectivities. Notably, the studies presented here sufficiently confirm that this two‐step strategy of sequential conjugate addition/Paal–Knorr cyclization is not only an attractive method for the indirect enantioselective heteroarylation of 3‐alkyloxindoles, but also opens up new avenues toward asymmetric synthesis of structurally diverse 3,3′‐disubstituted oxindole derivatives.  相似文献   

9.
A visible‐light‐mediated, organic photocatalytic stereoselective radical cascade cyclization of polyprenoids is described. The desired cascade cyclization products are achieved in good yields and high stereoselectivities with eosin Y as photocatalyst in hexafluoro‐2‐propanol. The catalyst system is also suitable for 1,3‐dicarbonyl compounds, which require only catalytic amounts of LiBr to promote the formation of the corresponding enols.  相似文献   

10.
11.
A synthetic method that relies on NIS (N‐iodosuccinimide)‐mediated cycloisomerization reactions of 1‐(2′‐anilinyl)prop‐2‐yn‐1‐ols to gem‐3‐(diiodomethyl)indolin‐2‐ones and 2‐(iodomethylene)indolin‐3‐ones has been developed. The reactions were shown to be chemoselective, with secondary and tertiary alcoholic substrates exclusively giving the 3‐ and 2‐oxindole products, respectively. In the case of the latter, the transformation features an unprecedented double 1,2‐OH and 1,2‐alkyl migration relay. Density functional theory (DFT) calculations based on proposed iodoaminocyclization species provide insight into this unique divergence in product selectivity.  相似文献   

12.
A visible‐light‐induced cascade radical cyclization of aroyl chlorides with 2‐(allyloxy)‐benzaldehyde derivatives has been developed. The method takes advantages of unactivated C=C bonds as the acyl radical acceptors and offers a mild and green approach for the synthesis of 1,4‐diketones bearing biologically important chroman‐4‐one skeletons with moderate to good yields.  相似文献   

13.
14.
A new metal‐free radical 5‐exo‐dig cyclization of phenol‐linked 1,6‐enynes with O2, 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO), and tBuONO is described. With this general method, carbonylated benzofurans can be accessed through incorporation of two oxygen atoms into the product from O2 and TEMPO through dioxygen activation and oxidative cleavage of the N? O bond, respectively.  相似文献   

15.
Oxidative single‐electron transfer‐catalyzed tandem reactions consisting of a conjugate addition and a radical cyclization are reported, which incorporate the mandatory terminal oxidant as a functionality into the product.  相似文献   

16.
In the presence of tetrabutylammonium fluoride and molecular sieves (MS) 4 Å in DMF, an efficient autoxidation reaction of 2‐oxindoles with ketones under air at room temperature has been developed. This approach may provide a green, practical, and metal‐free protocol for a wide range of biologically important 3‐hydroxy‐3‐(2‐oxo‐alkyl)‐2‐oxindoles.  相似文献   

17.
18.
A novel method for metal‐free oxothiolation of ynamides to construct oxazolidine‐2,4‐diones bearing sulfur‐substituted quaternary carbon atoms has been developed. It represents a rare C?O bond cleavage of ynamides, as well as a facile and tandem approach for the formation of C?O, C?S, and C?Cl bonds. This redox‐neutral protocol can be applied to the synthesis of multisubstituted oxazolidine‐2,4‐diones with good chemoselectivity and good yields of isolated products under mild conditions.  相似文献   

19.
The reaction pathway of the formation of 3,4‐dinitrofuroxan from glyoxime is theoretically investigated under experimental conditions with 25 % nitric acid and dinitrogentetroxide reagents to clarify the mechanism of formation of a furoxan ring by glyoxime. The geometric configurations of minima and transition‐state species are optimized at the (U)B3LYP/6‐311++G** level. The CCSD(T) and CASSCF(10e,8o)/CASSCF(9e,8o) single‐point energy corrections at the same level are performed on top of the optimized geometries. A subsequent dynamic correlation by using NEVPT2/6‐311++G**‐level single‐point energy calculations based on the CASSCF results is also performed to obtain accurate energy values. The formation reaction is analyzed from two processes: glyoxime nitration and 3,4‐dinitroglyoxime (nitration product) oxidative cyclization. Calculation results indicate that the electrophilic substitution of nitronium ions from the protonated HNO3 and the abstraction of hydrogen ions by HNO3 molecules are requisites of glyoxime nitration. The formation of a furoxan ring from 3,4‐dinitroglyoxime involves two possible mechanisms: 1) oxydehydrogenation by NO2 molecules and the subsequent torsion of NO radical groups to form a ring and 2) the alternation of dehydrogenation and cyclization. The intermediates and transition states in both routes exhibit monoradical and diradical characteristics. Singlet and triplet reactions are considered for the diradical species. Results show that the singlet reaction mechanism is more favorable for cyclization than the triplet reaction. The formation of a furoxan ring from oxime is in accordance with the stepwise intermolecular dehydrogenation and intramolecular torsion to the ring.  相似文献   

20.
Radical anions generated from urea carbonyls by reductive electron transfer are exploited in carbon–carbon bond formation. New radical cyclizations of urea radical anions deliver complex nitrogen heterocycles and, depending upon the proton source used in the reactions, a chemoselective switch between reaction pathways can deliver two heterobicyclic scaffolds. A computational study has been used to investigate the selectivity of the urea radical processes. Furthermore, radical cyclization cascades involving urea radical anions deliver unusual spirocyclic aminal architectures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号