首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Heteroatom‐doped porous carbon derived from biomass have recently received increasing attention due to their unique properties such as high electrical conductivity, large specific surface area, high porosity, and easy availability, which are appealing materials for versatile applications in catalysis, energy, separation and adsorption, and life sciences as well. On the basis of our previous work in this field, we summarized in this account our recent progress on design, synthesis of metal (e. g., Pd, Co) nanoparticles supported heteroatom‐doped hierarchical porous carbon material derived from bamboo shoots and their applications for important organic transformations, including chemoselective semihydrogenation of alkynes, hydrosilylation of alkynes, cascade synthesis of benzofurans from terminal alkynes and iodophenols, selective hydrogenation of functionalized nitroarenes to form anilines, imines, and formamides. Finally, the current state and future challenges in this field are discussed. We hope this account could shed light on the rational design of novel non‐noble metal based heterogeneous catalysts derived from biomass for efficient and sustainable organic transformations.  相似文献   

2.
A visible‐light‐driven radical‐mediated strategy for the in situ generation of aza‐ortho ‐quinone methides from 2‐vinyl‐substituted anilines and alkyl radical precursors is described. This process enables an efficient multicomponent reaction of 2‐vinylanilines, halides, and sulfur ylides, and has a wide substrate scope and good functional group tolerance. Treatment of the cycloaddition products with a base leads to densely functionalized indoles in a single‐flask operation.  相似文献   

3.
Platinum and palladium nanoparticles supported on three types of carbon nanofibers (CNFs) are synthesized and used as catalysts in the hydrogenation of nitroarenes. Nanosized platinum particles dispersed on platelet-type CNF efficiently catalyze the reduction of functionalized nitroarenes to the corresponding substituted anilines in high turnover numbers with other functional groups remaining intact.  相似文献   

4.
The reaction of three types of carbon nanofibers (CNFs; platelet: CNF‐P, tubular: CNF‐T, herringbone: CNF‐H) with Ir4(CO)12 in mesitylene at 165 °C provided the corresponding CNF‐supported iridium nanoparticles, Ir/CNFs (Ir content=2.3–2.6 wt. %). Transmission electron microscopy (TEM) studies of these Ir/CNF samples revealed that size‐controlled Ir nanoparticles (average particle size of 1.1–1.5 nm) existed on the CNFs. Among the three Ir/CNF samples, Ir/CNF‐T showed an excellent catalytic activity and chemoselectivity towards hydrogenation of functionalized nitroarenes and imines; the corresponding aniline derivatives were obtained with high turnover numbers at ambient temperature under 10 atm of H2, and the catalyst is reusable. Ir/CNF‐T was also effective for the reductive N‐alkylation of anilines with carbonyl compounds.  相似文献   

5.
The four‐component reactions of anilines, dialkyl acetylenedicarboxylate, acenaphthenequinone, and dimedone (or cyclohexane‐1,3‐dione) in acetic acid provided an efficient synthetic procedure for the functionalized spiro[acenaphthylene‐1,2′‐quinoline] derivatives in good yields. This reaction has the advantages of using common starting material, mild reaction conditions, and operational simplicity.  相似文献   

6.
Substituted imines, α,β‐unsaturated imines, substituted secondary amines, and β‐amino carbonyl compounds have been synthesized by means of new cascade reactions with mono‐ or bifunctional gold‐based solid catalysts under mild reaction conditions. The related synthetic route involves the hydrogenation of a nitroaromatic compound in the presence of a second reactant such as an aldehyde, α,β‐unsaturated carbonyl compound, or alkyne, which circumvents an ex situ reduction process for producing the aromatic amine. The process is shown to be highly selective towards other competing groups, such as double bonds, carbonyls, halogens, nitriles, or cinnamates, and thereby allows the synthesis of different substituted nitrogenated compounds. For the preparation of imines, substituted anilines are formed and condensed in situ with aldehydes to provide the final product through two tandem reactions. High chemoselectivity is observed, for instance, when double bonds or halides are present within the reactants. In addition, we show that the Au/TiO2 system is also able to catalyze the chemoselective hydrogenation of imines, so that secondary amines can be prepared directly through a three‐step cascade reaction by starting from nitroaromatic compounds and aldehydes. On the other hand, Au/TiO2 can also be used as a bifunctional catalyst to obtain substituted β‐amino carbonyl compounds from nitroaromatics and α,β‐unsaturated carbonyl compounds. Whereas gold sites promote the in situ formation of anilines, the intrinsic acidity of Ti species on the support surface accelerates the subsequent Michael addition. Finally, two gold‐catalyzed reactions, that is, the hydrogenation of nitro groups and a hydroamination, have been coupled to synthesize additional substituted imines from nitroaromatic compounds and alkynes.  相似文献   

7.
Development of highly active and recyclable catalysts for selective hydrogenation of nitroarenes to amines in water at room temperature is always a challenge in chemical industry. This study reports a facile in situ method for synthesis of ultrafine palladium and platinum nanoparticles (NPs) stabilized by poly (amic acid) salt (PAAS) and their potential as catalysts for hydrogenation of nitroarenes with sodium borohydride or molecular hydrogen as reductant in water at room temperature. In the reduction of 4‐nitrophenol to 4‐aminophenol by sodium borohydride, the activity parameters of PdNPs–PAAS and PtNPs–PAAS catalyst is 6.66 × 103 and 5.58 × 103 s?1 M?1 respectively. In the hydrogenation of diverse nitroarenes under atmospheric hydrogen pressure, PdNPs–PAAS shows high activity but poor selectivity toward desired amines in some cases, while PtNPs–PAAS shows both high activity and high selectivity for selective hydrogenation of nitroarenes to corresponding anilines. The high efficiency of nanocatalyst is due to the quasi‐homogeneous dispersion of metal NPs and synergistic effects between metal NPs and PAAS. In addition, nanocatalyst can be easily recovered with pH‐sensibility of PAAS and reused at least six times without significant loss of catalytic activities.  相似文献   

8.
Nitroarenes are reductively cyclized with 3‐amino‐1‐propanols in dioxane/H2O in the presence of a ruthenium catalyst and tin(II) chloride dihydrate together with isopropanol to afford the corresponding quinolines. A reaction pathway involving initial reduction of nitroarenes to anilines, propanol group transfer from 3‐amino‐1‐propanols to anilines, N‐alkylation of anilines by 3‐anilino‐1‐propanols and heteroannulation of 1,3‐dianilinopropanes is proposed.  相似文献   

9.
A photocatalytic formal [3+2] cycloaddition of 2H‐azirines with alkynes has been achieved under irradiation by visible light in the presence of organic dye photocatalysts. This transformation provides efficient access to highly functionalized pyrroles in good yields and has been applied to the synthesis of drug analogues. A primary trial of photocascade catalysis merging energy transfer and redox neutral reactions was shown to be successful.  相似文献   

10.
The development of efficient and selective C?N bond‐forming reactions from abundant feedstock chemicals remains a central theme in organic chemistry owing to the key roles of amines in synthesis, drug discovery, and materials science. Herein, we present a dual catalytic system for the N‐alkylation of diverse aromatic carbocyclic and heterocyclic amines directly with carboxylic acids, by‐passing their preactivation as redox‐active esters. The reaction, which is enabled by visible‐light‐driven, acridine‐catalyzed decarboxylation, provides access to N‐alkylated secondary and tertiary anilines and N‐heterocycles. Additional examples, including double alkylation, the installation of metabolically robust deuterated methyl groups, and tandem ring formation, further demonstrate the potential of the direct decarboxylative alkylation (DDA) reaction.  相似文献   

11.
A highly efficient and chemoselective one‐pot protocol for the diversity‐oriented synthesis of two types of coumarin‐based formal cross‐coupling adducts, furo[3,2‐c]coumarins and 3‐benzofuranyl chromenones, is described. Key attributes of the methodology are an initial chemoselective acylation of functionalized phosphorus zwitterions and a subsequent chemoselective intramolecular Wittig reaction that preferentially resulted in one of the two coumarin derivatives in high yield, depending on relative reactivities and the addition sequence of the acylating agents.  相似文献   

12.
《中国化学快报》2023,34(6):107954
Inhibiting the side reactions while promoting hydrogenation are the main target for the production of functional anilines from nitroarenes; consequently, the preparation of an ideal catalyst to improve chemical selectivity is one of the hot issues. In this work, we provided an easy-to-prepare catalyst with N-doped carbon layers, where the FexOy nanoparticles were encapsulated and distributed uniformly. The structural features of catalyst were characterized by several techniques, and the selected catalyst was next applied to the hydrogenation of nitrobenzene under varied conditions, involving temperature, holding period and H2 pressure. Subsequently, we conducted the synthesis of more than 16 substrates for the corresponding anilines with varied functional groups. The hydrogenation protocol to gram-scale synthesis as well as lifecycle performance were also demonstrated in the batch reactor, together with the explanation of its catalytic mechanisms. Overall, the present work provides an available preparation of simple but highly efficient catalysts for the production or aromatic amines, which will be benefit for the sustainable development of this field in near future.  相似文献   

13.
Sustainable development demands an environmentally friendly and efficient method for the hydrogenation of organic molecules, including the hydrogenation of functionalized nitroarenes. In this study, a highly active and selective metal–organic framework-supported palladium catalyst was prepared for the catalytic hydrogenation of nitroarenes. High selectivity (>99%) and excellent yield (98%) of aniline were realized after 2 hours in ethanol under hydrogen (1 atm) at room temperature. The reductions were successfully carried out in the presence of a wide range of other reducible functional groups. More importantly, the catalyst was very stable without the loss of its catalytic activity after five cycles.  相似文献   

14.
A rare example of a one‐pot process that involves asymmetric triple relay catalysis is reported. The key step is an asymmetric [1,5] electrocyclic reaction of functionalized ketimines. The substrates for this process were obtained in situ in a two‐step process that involved the hydrogenation of nitroarenes with a Pd/C catalyst to yield aryl amines and their subsequent coupling with isatin derivatives in a Brønsted acid catalyzed ketimine formation reaction. The electrocyclization was catalyzed by a bifunctional chiral Brønsted base/hydrogen bond donor catalyst. The one‐pot process gave the desired products in good yields and with excellent enantioselectivity.  相似文献   

15.
Many reactions show much faster kinetics in microdroplets than in the bulk phase. Most reported reactions in microdroplets mirror the products found in bulk reactions. However, the unique environment of microdroplets allows different chemistry to occur. In this work, we present the first chemoselective N‐alkylation of indoles in aqueous microdroplets via a three‐component Mannich‐type reaction without using any catalyst. In sharp contrast, bulk reactions using the same reagents with a catalyst yield exclusively C‐alkylation products. The N‐alkylation yield is moderate in microdroplets, up to 53 %. We extended the scope of the microdroplet reaction and obtained a series of new functionalized indole aminals, which are likely to have biological activities. This work clearly indicates that microdroplet reactions can show reactivity quite different from that of bulk‐phase reactions, which holds great potential for developing novel reactivities in microdroplets.  相似文献   

16.
For the first time, an aza‐Heck cyclization that allows the preparation of indoline scaffolds is described. Using N‐hydroxy anilines as electrophiles, which can be easily accessed from the corresponding nitroarenes, this method provides indolines bearing pendant functionality and complex ring topologies. Synthesis of challenging indolines, such as those bearing fully substituted carbon atoms at C2, is also possible using this method.  相似文献   

17.
《中国化学会会志》2018,65(9):1104-1109
Werner‐type transition‐metal complexes (WTMC) such as [Co(NH3)5Cl]Cl2, Cu[(NH3)4]SO4, Mn(acac)3, Ni[(NH3)6]Cl2, Ni[(en)3]S2O3, and Hg[Co(SCN)4] efficiently promote the chemoselective acetylation of phenols and anilines under solvent‐free condition. The results of this study clearly shows that the optimal condition for the acetylation of anilines/phenols (1 mmol) ( 2a–r ) with acetic anhydride (1.2 mmol) in the presence of WTMC (1 mmol) and two drops of H3PO4 on heating for 10 min under solvent‐free condition gives the corresponding acetanilides/phenyl acetate ( 3a–r ) in good to excellent yield. Furthermore, the method is simple, efficient, chemoselective, and eco‐friendly under solvent‐free condition for the acetylation of anilines and phenols promoted by WTMC by using acetic anhydrate as the acetylating agent. The simple preparation of the catalyst, easy procedure of the acetylation reaction, and simple work‐up indicate the importance of WTMC for such reactions.  相似文献   

18.
A chemoselective and highly efficient hydrogenation of nitroarenes and deoxygenation of pyridine N-oxides using a cheap and environmentally friendly H2/MoO2Cl2 system has been developed  相似文献   

19.
Nitroarenes react with tris(3‐hydroxypropyl)amine in an aqueous medium (dioxane/H2O) at 180° in the presence of a catalytic amount of a ruthenium catalyst and tin(II) chloride along with isopropanol as hydrogen donor to afford the corresponding quinolines in good yields. The presence of tin(II) chloride is essential for the formation of quinolines. A reaction pathway involving initial reduction of nitroarenes to anilines, propanol group transfer from tris(3‐hydroxypropyl)amine to anilines to form 3‐anilino‐1‐propanols, N‐alkylation of anilines by 3‐anilino‐1‐propanol to form 1,3‐dianilinopropane and intramolecular heteroannulation of 1,3‐dianilinopropane is proposed for this catalytic process.  相似文献   

20.
With a span as long as the history of polymer science itself, post‐polymerization modification represents a versatile platform for the preparation of diversely functionalized polymers from a single precursor. Starting with the initial efforts by Staudinger in the 1920s, many of the early developments in modern polymer science can be attributed to the utilization of post‐polymerization modification reactions. The scope of post‐polymerization modification has greatly expanded since the 1990s due to the development of functional group tolerant controlled/living polymerization techniques combined with the (re)discovery of highly efficient coupling chemistries that allow quantitative, chemoselective, and orthogonal functionalization of reactive polymer precursors. After some basic mechanistic considerations, this Highlight will provide an overview of the development and evolution of eight main classes of post‐polymerization modification reactions. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号