首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
1‐, 2‐, and 6‐(Ferrocenylethynyl)azulene derivatives 10 – 16 have been prepared by palladium‐catalyzed alkynylation of ethynylferrocene with the corresponding haloazulenes under Sonogashira–Hagihara conditions. Compounds 10 – 16 reacted with tetracyanoethylene (TCNE) in a [2+2] cycloaddition–cycloreversion reaction to afford the corresponding 2‐azulenyl‐1,1,4,4,‐tetracyano‐3‐ferrocenyl‐1,3‐butadiene chromophores 17 – 23 in excellent yields. The redox behavior of the novel azulene chromophores 17 – 23 was examined by using cyclic voltammetry (CV) and differential pulse voltammetry (DPV), which revealed their multistep electrochemical reduction properties. Moreover, a significant color change was observed by visible spectroscopy under electrochemical reduction conditions.  相似文献   

2.
Aryl‐substituted 1,1,4,4‐tetracyano‐1,3‐butadienes (FcTCBDs) and bis(1,1,4,4‐tetracyanobutadiene)s (bis‐FcTCBDs), possessing a ferrocenyl group on each terminal, were prepared by the reaction of a variety of alkynes with tetracyanoethylene (TCNE) in a [2+2] cycloaddition reaction, followed by retro‐electrocyclization of the initially formed [2+2] cycloadducts (i.e., cyclobutene derivatives). The characteristic intramolecular charge transfer (ICT) between the donor (ferrocene) and acceptor (TCBD) moieties were investigated by using UV/Vis spectroscopy. The redox behaviors of FcTCBDs and bis‐FcTCBDs were examined by cyclic voltammetry (CV) and differential pulse voltammetry (DPV), which revealed their properties of multi‐electron transfer depending on the number of ferrocene and TCBD moieties. Moreover, significant color changes were observed by visible spectroscopy under the electrochemical reduction conditions.  相似文献   

3.
π‐Extended TCBD‐porphyrins that contained a 1,1,4,4‐tetracyanobuta‐1,3‐diene unit were prepared by a highly efficient [2+2] cycloaddition of tetracyanoethene (TCNE) or 7,7,8,8‐tetracyano‐p‐quinodimethane (TCNQ) with meso‐substituted trans‐A2B2‐porphyrins that contained two phenylethynyl groups, followed by a retro‐electrocyclization reaction. Depending on the electronic properties of the arylethynyl groups, the cycloaddition reaction took place exclusively on either one or two ethynyl moieties with high yield. The addition of TCNQ proceeded with complete regioselectivity. The resulting π‐expanded TCBD‐porphyrins had a hypsochromically shifted Soret band and showed unique, broad absorption in the visible region.  相似文献   

4.
The cocrystal salt tetraaquabis[trans‐1,2‐bis(pyridin‐4‐yl)ethene‐κN]iron(II) bis(1,1,3,3‐tetracyano‐2‐ethoxypropenide)–trans‐1,2‐bis(pyridin‐4‐yl)ethene (1/2), [Fe(C12H10N2)2(H2O)4](C9H5N4O)2·2C12H10N2, is a rare example of a mononuclear FeII compound with trans‐1,2‐bis(pyridin‐4‐yl)ethane (bpe) ligands. The complex cation resides on a crystallographically imposed inversion center and exhibits a tetragonally distorted octahedral coordination geometry. Both the symmetry‐independent bpe ligand and the cocrystallized bpe molecule are essentially planar. The 1,1,3,3‐tetracyano‐2‐ethoxypropenide counter‐ion is nonplanar and the bond lengths are consistant with significant electron delocalization. The extended structure exhibits an extensive O—H…N hydrogen‐bonding network with layers of complex cations joined by the cocrystallized bpe. Both the coordinated and the cocrystallized bpe are involved in π–π interactions. Hirshfeld and fingerprint plots reveal the important intermolecular interactions. Density functional theory was used to estimate the strengths of the hydrogen‐bonding and π–π interactions, and suggest that the O—H…N hydrogen bonds enhance the strength of the π‐interactions by increasing the polarization of the pyridine rings.  相似文献   

5.
The self‐assembly of organic TCNQF.? radicals (2‐fluoro‐7,7,8,8‐tetracyano‐p‐quinodimethane) and the anisotropic [Tb(valpn)Cu]3+ dinuclear cations produced a single‐chain magnet (SCM) involving stacking interactions of TCNQF.? radicals (H2valpn is the Schiff base from the condensation of o‐vanillin with 1,3‐diaminopropane). Static and dynamic magnetic characterizations reveal that the effective energy barrier for the reversal of the magnetization in this hetero‐tri‐spin SCM is significantly larger than the barrier of the isolated single‐molecule magnet based on the {TbCu} dinuclear core.  相似文献   

6.
In the title salt, C14H18N22+·2C9H5N4O, the 1,1′‐diethyl‐4,4′‐bipyridine‐1,1′‐diium dication lies across a centre of inversion in the space group P21/c. In the 1,1,3,3‐tetracyano‐2‐ethoxypropenide anion, the two independent –C(CN)2 units are rotated, in conrotatory fashion, out of the plane of the central propenide unit, making dihedral angles with the central unit of 16.0 (2) and 23.0 (2)°. The ionic components are linked by C—H...N hydrogen bonds to form a complex sheet structure, within which each cation acts as a sixfold donor of hydrogen bonds and each anion acts as a threefold acceptor of hydrogen bonds.  相似文献   

7.
Previously reported was that cis‐ene‐vinylcyclopropanes (cis‐ene‐VCPs) underwent Rh‐catalyzed [5+2] reaction to give 5,7‐fused bicyclic products, where vinylcyclopropane (VCP) acts as five‐carbon synthon. Unfortunately, this reaction had very limited scope. Replacing the 2π component of cis‐ene‐VCPs to allene moiety, the corresponding cis‐allene‐VCPs did not undergo the expected normal [5+2] cycloaddition to give 5,7‐fused bicyclic products. Instead, the challenging bicyclo[4.3.1]decane skeleton was obtained via an unprecedented bridged [5+2] cycloaddition. DFT calculations were applied to understand why this bridged [5+2] reaction is favored over the anticipated but not realized normal [5+2] reaction.  相似文献   

8.
The [2.2]paracyclophane moiety is used as a spacer to connect the ends of a hex‐3‐ene‐1,5‐diyne unit, a π‐system that on thermolysis usually cycloaromatizes to a benzene ring (Bergman cyclization). For the preparation of the pseudo‐geminally‐bridged system 9 , the diacetylene 3 was chain‐extended to the diol 16 , which after conversion to the pseudo‐geminal dibromide 17 was ring‐closed by treatment with LiHMDS/HMPA to the [2.2]paracyclophane enediyne 9 . Whereas the McMurry coupling of the pseudo‐ortho bisaldehyde 24 resulted in the formation of the hexadienyne‐bridged cyclophane 27 , the pseudo‐ortho‐bridged hydrocarbon 11 was obtained by preparing first the diol 28 from 24 , converting the latter into the dioxolane 29 , which in the last step furnished the olefin 11 by treatment with Tf2O/EtN(iPr)2. The authentic Bergman product 10 of the pseudo‐gem‐bridged hexenediyne 9 was synthesized by a conventional sequence starting from the ethynyl formyl substrate 18 . Since the pseudo‐ortho‐enediyne‐bridged hydrocarbon 11 is thermally labile, its benzannelated derivate 34 was prepared. No classical Bergman cyclization reactions could be observed for any of the [2.2]paracyclophane‐bridged hexenediynes prepared here. In the pseudo‐gem‐series the fulvenes 14 and 15 were the only products that could be identified under thermal conditions (McMurry coupling); the benzannelated substrate 34 gave the benzofulvene‐bridged cyclophane 36 on photolysis. Bergman cyclizations yielding fulvene derivatives are extremely rare. The mechanism of the cyclization of 9 and 34 is discussed, using compliance constants. The structure assignments of the hydrocarbons synthesized in this study are based on spectroscopic studies as well as X‐ray structural analyses for 9 , 10 , 11 , 27 , and 34 .  相似文献   

9.
Using caprolactam as a ligand, the novel title cyano‐bridged yttrium(III)–ferricyanide complex, [Y(caprolactam)2(H2O)4Fe(CN)6] or [FeY(CN)6(C6H11NO)2(H2O)4], has been synthesized and structurally characterized. The Y atom is seven‐coordinate and has approximately pentagonal–bipyramidal stereochemistry, with water mol­ecules occupying apical positions. Of the five ligands in equatorial positions, one is the N‐bound bridging cyano group, and flanking this are two O‐­bound caprolactam moieties, which are markedly inclined towards the bridged ferricyanide moiety such that they partially envelop it. Water mol­ecules occupy the remaining two equatorial positions. The Y—N—C—Fe—C—N sequence of atoms lies on a crystallographic twofold axis and is therefore perfectly linear, which has not been observed previously in cyano‐bridged bimetallic complexes.  相似文献   

10.
Alkynyl‐substituted 3H‐corrole 9 a was converted to [3]cumulenic 2H‐corrole 10 a by treatment with trimethylsilyl chloride (TMSCl), and 1,3‐butadiyne‐bridged 3H‐corrole dimer 11 b was transformed into [5]cumulene‐bridged 2H‐corrole dimer 12 b by oxidation with PbO2. Both 10 a and 12 b were metalated to form ZnII complexes 10 a‐Zn and 12 b‐Zn . The structures of 10 a‐Zn and 12 b‐Zn show planar conformations with bond‐length alternations that are analogous to those of tetraaryl [n]cumulenes. The cumulenic corrole dimers 12 b and 12 b‐Zn display large NIR absorption bands in the range of 700–1400 nm (maximum ϵ≈1.0×105 m −1 cm−1) owing to the effective π‐conjugation between the two corrole units through the [5]cumulene bridge.  相似文献   

11.
The Hirsch–Bingel reaction of bis{4‐methyl[1,2,3]triazolyl}malonic ester‐bridged bis(permethyl‐β‐cyclodextrin) 1 with C60 has led to the formation of a new fullerene‐bridged bis(permethyl‐β‐cyclodextrin) 2 , which has been comprehensively characterized by NMR spectroscopy, MALDI‐MS, and elemental analysis. Taking advantage of the high affinity between 2 and 5,10,15,20‐tetrakis(4‐sulfonatophenyl)porphyrin ( 3 ) or [5,10,15,20‐tetrakis(4‐sulfonatophenyl)porphinato]zinc(II) ( 4 ), linear supramolecular architectures with a width of about 2 nm and a length ranging from hundreds of nanometers to micron dimension were conveniently constructed and fully investigated by transmission electron microscopy (TEM), atomic force microscopy (AFM), and scanning electron microscopy (SEM). Significantly, the photoinduced electron‐transfer (PET) process between porphyrin and C60 moieties takes place within the 2 ? 3 and 2 ? 4 supramolecular architectures under light irradiation, leading to the highly efficient quenching of the porphyrin fluorescence. The PET process and the charge‐separated state were investigated by means of fluorescence spectroscopy, fluorescence decay, cyclic voltammetry, and nanosecond transient absorption measurements.  相似文献   

12.
Three water‐soluble tetracationic quadrupolar chromophores comprising two three‐coordinate boron π‐acceptor groups bridged by thiophene‐containing moieties were synthesised for biological imaging applications. Compound 3 containing the bulkier 5‐(3,5‐Me2C6H2)‐2,2′‐(C4H2S)2‐5′‐(3,5‐Me2C6H2) bridge is stable over a long period of time, exhibits a high fluorescence quantum yield and strong one‐ and two‐photon absorption (TPA), and has a TPA cross section of 268 GM at 800 nm in water. Confocal laser scanning fluorescence microscopy studies in live cells indicated localisation of the chromophore at the mitochondria; moreover, cytotoxicity measurements proved biocompatibility. Thus, chromophore 3 has excellent potential for one‐ and two‐photon‐excited fluorescence imaging of mitochondrial function in cells.  相似文献   

13.
Imine‐bridged rotaxanes are a new type of rotaxane in which the axle and macrocyclic ring are connected by imine bonds. We have previously reported that in imine‐bridged rotaxane 5 , the shuttling motion of the macrocycle could be controlled by changing the temperature. In this study, we investigated how the axle and macrocycle structures affect the construction of the imine‐bridged rotaxane as well as the dynamic equilibrium between imine‐bridged rotaxane 5 and [2]rotaxane 7 by using various combinations of axles ( 1 A , B ), macrocycles ( 2 a – e ), and side‐stations (XYL and TEG). In the threading process, the flexibility of the macrocycle and the substituent groups at the para position of the aniline moieties affect the preparation of the threaded imines. The size of the imine‐bridging station and the macrocyclic tether affects the hydrolysis of the imine bonds under acidic conditions.  相似文献   

14.
A tetracyano quinoidal tetrathiophene, having a central bi(thieno[3,4‐c]pyrrole‐4,6‐dione) acceptor, has been studied. The recovered aromaticity of the thiophenes produces a diradical species with cross‐conjugation between the inter‐dicyano and inter‐dione acceptor paths. A diradical character of y0=0.61 and a singlet–triplet gap of ?2.76 kcal mol?1 were determined. Competition between the two cross‐conjugated paths enhances the disjointed character of the SOMOs and results in the confinement of the diradical to the molecular center, enabling a thermodynamic diradical stabilization featuring a half‐life of 262 hours. Cross‐conjugation effects have been also addressed in the anionic species (up to a radical trianion).  相似文献   

15.
Bidipyrrin‐bridged macrocycles, prepared from NiII‐bridged dipyrrin‐based nanorings by intramolecular oxidative biaryl coupling reactions, yielded [2+4]‐type ZnII‐assisted stable twisted‐ring dimers comprising two double helices. These [2+4]‐type metal complexes can be optically resolved by chiral HPLC and exhibit tunable electronic and optical properties as a result of spring‐like motions. The double helices behave as glue to connect two macrocycles and as the screws of hinges to form thermally responsive synchronized spring systems.  相似文献   

16.
Acetylene and trans‐ethylene bridged BIII‐subporphyrin dimers were synthesized by cross‐coupling reactions of meso‐bromo BIII subporphyrin. These dimers display perturbed and red‐shifted absorption spectra reaching around 750 nm and fluorescence reaching at around 850 nm with high quantum yields of 0.39 and 0.47, respectively. DFT calculations have revealed that the HOMOs and the LUMOs of both dimers are spread over the two subporphyrin units as an indication of effective conjugation between the two subporphyrin units. The large Stokes shifts and characteristic pico‐second time‐resolved transient absorption spectra indicated that the S1‐states of the dimers relax with structural changes, which are larger for the trans‐ethylene bridged dimer.  相似文献   

17.
The Biginelli reactions of salicylaldehyde and 2‐hydroxy‐l‐naphthaldehyde with ethyl or methyl acetoacetate, ethyl benzoylacetate, and urea have been reinvestigated both in the structures of the reaction products and in the reaction conditions. Salicylaldehyde with ethyl and methyl acetoacetate resulted in oxygen‐bridged tricyclic tetrahydro pyrimidines, whereas with ethyl benzoylacetate afforded the only normal 3,4‐dihydropyrimidin‐2‐one. 2‐Hydroxy‐l‐naphthaldehyde with ethyl and methyl acetoacetate formed the tricyclic compounds. Steric effect is likely to be the principal determinant in governing the formation of product dichotomy. Previous controversial results as to the structure of the Biginelli products have been discussed and settled. The molecular structures of the dihydropyrimidinones and bridged tricyclic products have been fully characterized and confirmed unambiguously by single crystal X‐ray diffraction.  相似文献   

18.
A series of doubly β‐to‐β bridged cyclic ZnII porphyrin arrays were prepared by a stepwise Suzuki–Miyaura coupling reaction of borylated ZnII porphyrin with different bridge groups. The coupling of the building block of β,β′‐diboryl ZnII porphyrin 1 with different bridges provided the doubly β‐to‐β carbazole‐bridged ZnII porphyrin array 3 , the fluorene‐bridged ZnII porphyrin array 5 , the fluorenone‐bridged ZnII porphyrin array 7 , and the three‐carbazole‐bridged ZnII porphyrin ring 8 . The structural assignment of 3 was confirmed by the X‐ray diffraction analysis, which revealed a highly symmetrical and remarkably bent syn‐form structure. The incorporation of bridge units with different electronic effects results in different photophysical properties of the cyclic ZnII porphyrin arrays. Comprehensive photophysical studies demonstrate that the electron‐withdrawing bridge fluorenone has the largest electronic interaction with the ZnII porphyrin unit among the series, thus resulting in the highest two‐photon absorption cross‐section values (σ(2)) of 6570±60 GM for 7 . The present work provides a new strategy for developing porphyrin‐based optical materials.  相似文献   

19.
The first examples of pyrrole‐ and thiophene‐bridged 5,15‐diazaporphyrin (DAP) dimers are prepared through Stille coupling reactions of nickel(II) and copper(II) complexes of 3‐bromo‐10,20‐dimesityl‐5,15‐diazaporphyrin (mesityl=2,4,6‐trimethylphenyl) with the respective 2,5‐bis(tributylstannyl)heteroles. The effects of the heterole spacers and meso nitrogen atoms on the optical, electrochemical, and magnetic properties of the DAP dimers are investigated by UV/Vis absorption spectroscopy, density functional theory calculations, magnetic circular dichroism spectroscopy, cyclic voltammetry, and EPR spectroscopy. The heterole spacers are found to have a significant impact on the electronic transitions over the entire π‐system. In particular, the pyrrole‐bridged DAP dimers exhibit high light‐harvesting potential in the low‐energy visible/near‐infrared region owing to the intrinsic charge‐transfer character of the lowest excitation.  相似文献   

20.
A “Prins pinacol type rearrangement followed by C4‐OBn participation” in a cascade manner has been observed while probing the fate of carbocation in some carbohydrate derived homoallylic alcohols in the Prins reaction. This has led to an easy access to tetrahydrofuran‐fused bridged bicyclic ketals (or tetrahydrofuran‐fused 1,6‐anhydro‐heptopyranose frameworks) which are further converted into some annulated sugars and C2‐branched heptoses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号