首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Carbon dots (CDs), a new class of fluorescent carbon nanoparticles (less than 10 nm in size), have been widely applied in various fields, including sensors, bioimaging, catalysis, light‐emitting devices (LEDs), and photoelectronic devices, owing to their unique properties such as low toxicity, bio‐compatibility, high photostability, easy surface modification, and up‐conversion fluorescence, over the past decades. Recently, multiple‐color‐emissive CDs, especially red‐emissive CDs (RCDs), have drawn much attention owing to their unique advantages, like the ability to penetrate the animal bodies without the disturbance of strong tissue autofluorescence, multiple‐color fluorescence displaying or sensing, and the capacity to be one essential component to obtain white LED (WLED). In this review, we focused on the progress of recently‐emerging RCDs in the past five years, including their synthetic methods (hydrothermal, solvothermal, reflux condensation and microwave techniques), influencing factors (precursors, solvents, elements doping, surface chemistry) and various applications (bioimaging, sensor, photocatalysis and WLEDs), with a perspective on the future advancements.  相似文献   

2.
Carbon dots(CDs) have attracted considerable research interest in recent years due to their unique optical properties, chemical inertness, facile synthesis from a wide range of starting materials, and advantages over classic quantum dots and organic dyes.Various methods have been developed for preparing the CDs, including chemical oxidation, hydro/solvothermal method,electrochemical method, microwave-assisted synthesis, and direct carbonization method. Importantly, the superior electronic properties of CDs including efficient light harvesting and prominent photoinduced electron transfer have aroused considerable attention in fluorescence(FL) and chemiluminescence(CL) sensing field. In this review, we aim to demonstrate the recent progress of CDs in the synthesis, FL and CL sensing applications. This review gives new insights into how to use different synthetic methods to tune the structure of the CDs, with the major focus on FL and CL sensing.  相似文献   

3.
In recent years, fluorescent carbon dots (CDs) have been developed and showed potential applications in biomedical imaging and light‐emitting diodes (LEDs) for their excellent fluorescent properties. However, it still remains a challenge to incorporate fluorescent CDs into the host matrix in situ to overcome their serious self‐quenching. Herein, a one‐pot hydrothermal method is used to prepare nano‐zirconia with CDs (CDs@ZrO2) nanoparticles. During the reaction, CDs and nano‐zirconia are generated simultaneously and connected with silane coupling agent. The CDs@ZrO2 nanoparticles exhibit tunable emission wavelength from 450 to 535 nm emission by regulating the content of citric acid in the feed. The quantum yield of the CDs@ZrO2 is up to 23.8%. Furthermore, the CDs@ZrO2 nanoparticles with regulable fluorescence emission can be used for the fluorescent material to prepare white LEDs. The prepared LED has significant white light emission with color coordinates of (0.30, 0.37) and its color rendering index (CRI) is 67.1. In summary, we have developed the solid‐state CDs@ZrO2 nanoparticles with tunable emission by a valuable strategy, that is, one‐pot method, for white LEDs.  相似文献   

4.
Nanoporous silica solids can offer opportunities for hosting photocatalytic components such as various tetra‐coordinated transition metal ions to form systems referred to as “single‐site photocatalysts”. Under UV/visible‐light irradiation, they form charge transfer excited states, which exhibit a localized charge separation and thus behave differently from those of bulk semiconductor photocatalysts exemplified by TiO2. This account presents an overview of the design of advanced functional materials based on the unique photo‐excited mechanisms of single‐site photocatalysts. Firstly, the incorporation of single‐site photocatalysts within transparent porous silica films will be introduced, which exhibit not only unique photocatalytic properties, but also high surface hydrophilicity with self‐cleaning and antifogging applications. Secondary, photo‐assisted deposition (PAD) of metal precursors on single‐site photocatalysts opens up a new route to prepare nanoparticles. Thirdly, visible light sensitive photocatalysts with single and/or binary oxides moieties can be prepared so as to use solar light, the ideal energy source.  相似文献   

5.
Two‐photon photodynamic therapy (2P‐PDT) is a promising noninvasive treatment of cancers and other diseases with three‐dimensional selectivity and deep penetration. However, clinical applications of 2P‐PDT are limited by small two‐photon absorption (TPA) cross sections of traditional photosensitizers. The development of folate receptor targeted nano‐photosensitizers based on conjugated polymers is described. In these nano‐photosensitizers, poly{9,9‐bis[6′′‐(bromohexyl)fluorene‐2,7‐ylenevinylene]‐coalt‐1,4‐(2,5‐dicyanophenylene)}, which is a conjugated polymer with a large TPA cross section, acts as a two‐photon light‐harvesting material to significantly enhance the two‐photon properties of the doped photosensitizer tetraphenylporphyrin (TPP) through energy transfer. These nanoparticles displayed up to 1020‐fold enhancement in two‐photon excitation emission and about 870‐fold enhancement in the two‐photon‐induced singlet oxygen generation capability of TPP. Surface‐functionalized folic acid groups make these nanoparticles highly selective in targeting and killing KB cancer cells over NIH/3T3 normal cells. The 2P‐PDT activity of these nanoparticles was significantly improved, potentially up to about 1000 times, as implied by the enhancement factors of two‐photon excitation emission and singlet oxygen generation. These nanoparticles could act as novel two‐photon nano‐photosensitizers with combined advantages of low dark cytotoxicity, targeted 2P‐PDT with high selectivity, and simultaneous two‐photon fluorescence imaging capability; these are all required for ideal two‐photon photosensitizers.  相似文献   

6.
A key challenge of photoregulated living radical polymerization is developing efficient and robust photocatalysts. Now carbon dots (CDs) have been exploited for the first time as metal‐free photocatalysts for visible‐light‐regulated reversible addition–fragmentation chain‐transfer (RAFT) polymerization. Screening of diverse heteroatom‐doped CDs suggested that the P‐ and S‐doped CDs were effective photocatalysts for RAFT polymerization under mild visible light following a photoinduced electron transfer (PET) involved oxidative quenching mechanism. PET‐RAFT polymerization of various monomers with temporal control, narrow dispersity (?≈1.04), and chain‐end fidelity was achieved. Besides, it was demonstrated that the CD‐catalyzed PET‐RAFT polymerization was effectively performed under natural solar irradiation.  相似文献   

7.
Long‐lifetime room‐temperature phosphorescence (RTP) materials are important for many applications, but they are highly challenging materials owing to the spin‐forbidden nature of triplet exciton transitions. Herein, a facile, quick and gram‐scale method for the preparation of ultralong RTP (URTP) carbon dots (CDs) was developed via microwave‐assisted heating of ethanolamine and phosphoric acid aqueous solution. The CDs exhibit the longest RTP lifetime, 1.46 s (more than 10 s to naked eye) for CDs‐based materials to date. The doping of N and P elements is critical for the URTP which is considered to be favored by a n→π* transition facilitating intersystem crossing (ISC) for effectively populating triplet excitons. In addition, possibilities of formation of hydrogen bonds in the interior of the CDs may also play a significant role in producing RTP. Potential applications of the URTP CDs in the fields of anti‐counterfeiting and information protection are proposed and demonstrated.  相似文献   

8.
Long‐lifetime room‐temperature phosphorescence (RTP) materials are important for many applications, but they are highly challenging materials owing to the spin‐forbidden nature of triplet exciton transitions. Herein, a facile, quick and gram‐scale method for the preparation of ultralong RTP (URTP) carbon dots (CDs) was developed via microwave‐assisted heating of ethanolamine and phosphoric acid aqueous solution. The CDs exhibit the longest RTP lifetime, 1.46 s (more than 10 s to naked eye) for CDs‐based materials to date. The doping of N and P elements is critical for the URTP which is considered to be favored by a n→π* transition facilitating intersystem crossing (ISC) for effectively populating triplet excitons. In addition, possibilities of formation of hydrogen bonds in the interior of the CDs may also play a significant role in producing RTP. Potential applications of the URTP CDs in the fields of anti‐counterfeiting and information protection are proposed and demonstrated.  相似文献   

9.
A facile approach for preparation of photoluminescent (PL) carbon dots (CDs) is reported. The three resulting CDs emit bright and stable red, green and blue (RGB) colors of luminescence, under a single ultraviolet‐light excitation. Alterations of PL emission of these CDs are tentatively proposed to result from the difference in their particle size and nitrogen content. Interestingly, up‐conversion (UC)PL of these CDs is also observed. Moreover, flexible full‐color emissive PVA films can be achieved through mixing two or three CDs in the appropriate ratios. These CDs also show low cytotoxicity and excellent cellular imaging capability. The facile preparation and unique optical features make these CDs potentially useful in numerous applications such as light‐emitting diodes, full‐color displays, and multiplexed (UC)PL bioimaging.  相似文献   

10.
A facile approach for preparation of photoluminescent (PL) carbon dots (CDs) is reported. The three resulting CDs emit bright and stable red, green and blue (RGB) colors of luminescence, under a single ultraviolet‐light excitation. Alterations of PL emission of these CDs are tentatively proposed to result from the difference in their particle size and nitrogen content. Interestingly, up‐conversion (UC)PL of these CDs is also observed. Moreover, flexible full‐color emissive PVA films can be achieved through mixing two or three CDs in the appropriate ratios. These CDs also show low cytotoxicity and excellent cellular imaging capability. The facile preparation and unique optical features make these CDs potentially useful in numerous applications such as light‐emitting diodes, full‐color displays, and multiplexed (UC)PL bioimaging.  相似文献   

11.
Singlet oxygen (1O2) is of great interest because of its potential applications in photodynamic therapy, photooxidation of toxic molecules, and photochemical synthesis. Herein, we report novel metallophthalocyanine (MPc) based conjugated microporous polymers (MPc‐CMPs) as photosensitizers for the generation of 1O2. The rigid microporous structure efficiently improves the exposure of the majority of the MPc units to oxygen. The MPc‐CMPs also exhibit an enhanced light‐harvesting capability in the far‐red region through their extended π‐conjugation systems. Their microporous structure and excellent absorption capability for long‐wavelength photons result in the MPc‐CMPs showing high efficiency for 1O2 generation upon irradiation with 700 nm light, as evident by using 1,3‐diphenylisobenzofuran as an 1O2 trap. These results indicate that MPc‐CMPs can be considered as promising photosensitizers for the generation of 1O2.  相似文献   

12.
Recent advances in direct‐use plasmonic‐metal nanoparticles (NPs) as photocatalysts to drive organic synthesis reactions under visible‐light irradiation have attracted great interest. Plasmonic‐metal NPs are characterized by their strong interaction with visible light through excitation of the localized surface plasmon resonance (LSPR). Herein, we review recent developments in direct photocatalysis using plasmonic‐metal NPs and their applications. We focus on the role played by the LSPR of the metal NPs in catalyzing organic transformations and, more broadly, the role that light irradiation plays in catalyzing the reactions. Through this, the reaction mechanisms that these light‐excited energetic electrons promote will be highlighted. This review will be of particular interest to researchers who are designing and fabricating new plasmonic‐metal NP photocatalysts by identifying important reaction mechanisms that occur through light irradiation.  相似文献   

13.
C60–bodipy triads and tetrads based on the energy‐funneling effect that show broadband absorption in the visible region have been prepared as novel triplet photosensitizers. The new photosensitizers contain two or three different light‐harvesting antennae associated with different absorption wavelengths, resulting in a broad absorption band (450–650 nm). The panchromatic excitation energy harvested by the bodipy moieties is funneled into a spin converter (C60), thus ensuring intersystem crossing and population of the triplet state. Nanosecond time‐resolved transient absorption and spin density analysis indicated that the T1 state is localized on either C60 or the antennae, depending on the T1 energy levels of the two entities. The antenna‐localized T1 state shows a longer lifetime (τT=132.9 μs) than the C60‐localized T1 state (ca. 27.4 μs). We found that the C60 triads and tetrads can be used as dual functional photocatalysts, that is, singlet oxygen (1O2) and superoxide radical anion (O2 . ?) photosensitizers. In the photooxidation of naphthol to juglone, the 1O2 photosensitizing ability of the C60 triad is a factor of 8.9 greater than the conventional triplet photosensitizers tetraphenylporphyrin and methylene blue. The C60 dyads and triads were also used as photocatalysts for O2 . ?‐mediated aerobic oxidation of aromatic boronic acids to produce phenols. The reaction times were greatly reduced compared with when [Ru(bpy)3Cl2] was used as photocatalyst. Our study of triplet photosensitizers has shown that broadband absorption in the visible spectral region and long‐lived triplet excited states can be useful for the design of new heavy‐atom‐free organic triplet photosensitizers and for the application of these triplet photosensitizers in photo‐organocatalysis.  相似文献   

14.
Carbon dots(CDs), novel luminescent zero-dimensional carbon nanomaterials, have been widely applied due to their low toxicity, optimal optical properties, and easy modification. However, the current controllable equipment and mechanism explanation of CDs are relatively vague and require urgent resolution.Full-color emission CDs, an essential CDs category, have attracted people’s attention given their light and color-tunable properties. In addition to a wider range of biological and optoelectroni...  相似文献   

15.
《化学:亚洲杂志》2017,12(3):314-323
Self‐standing TiO2 nanotube layers in the form of membranes are fabricated by self‐organizing anodization of Ti metal and a potential shock technique. The membranes are then decorated by sputtering different Pt amounts i) only at the top, ii) only at the bottom or iii) at both top and bottom of the tube layers. The Pt‐decorated membranes are transferred either in tube top‐up or in tube top‐down configuration onto FTO slides and are investigated, after crystallization, as photocatalysts for H2 generation using either front or back‐side light irradiation. Double‐side Pt‐decoration of the tube membranes leads to higher H2 generation rates (independently of tube and light‐irradiation configuration) compared to membranes decorated at only one side with similar overall Pt amounts. The results suggest that this effect cannot be only ascribed to the overall amount of Pt co‐catalyst as such but also to its distribution at both tube extremities. This leads to optimized light absorption and electron diffusion/transfer dynamics: the central part of the membranes acts as light‐harvesting zone and electrons therein generated can diffuse towards the Pt/TiO2 active zones (tube extremities) where they can react with the environment and generate H2.  相似文献   

16.
Conjugated copolymers based on benzodithiophene (BDT) derivatives and thiophene‐quinoxaline‐thiophene (TQT) segments represent an efficient class of light harvesting materials for organic photovoltaic (OPV) applications. Commonly, BDT‐TQT copolymers are synthesized by Stille cross‐coupling polymerization. In this study, alkoxy and thienyl functionalized alternating BDT‐alt‐TQT copolymers are synthesized by direct arylation polymerization (DArP), using Ozawa conditions. An extensive optimization of the reaction conditions such as the catalytic system, solvent, temperature, base, and the concentration of the catalyst is accomplished. The optical and electrochemical properties of the copolymers obtained by DArP are compared to the reference polymers synthesized by Stille cross‐coupling polymerization. Finally, the optimized BDT‐alt‐TQT copolymers are incorporated into organic solar cells as electron donors. The solar cells of the DArP copolymers exhibit power conversion efficiencies up to 80% (rel.) of their Stille cross coupling analogues. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1457–1467  相似文献   

17.
Light‐harvesting hybrids have gained much importance as they are considered as potential mimics for photosynthetic systems. In this Concept article we introduce the design concepts involved in the building up of light‐harvesting hybrids; these resemble the well‐studied organic‐based assemblies for energy transfer. We have structured this article into three parts based on the strategies adopted in the synthesis of hybrid assemblies, as covalent, semicovalent, and noncovalent procedures. Furthermore, the properties and structural features of the hybrids and analogous organic assemblies are compared. We also emphasize the challenges involved in the processability of these hybrid materials for device applications and present our views and results to address this issue through the design of soft‐hybrids by a solution‐state, noncovalent, self‐assembly process.  相似文献   

18.
Carbon dots (CDs) with dual‐emissive, robust, and aggregation‐induced RTP characteristics are reported for the first time. The TA‐CDs are prepared via hydrothermal treatment of trimellitic acid and exhibit unique white prompt and yellow RTP emissions in solid state under UV excitation (365 nm) on and off, respectively. The yellow RTP emission of TA‐CDs powder should be resulted from the formation of a new excited triplet state due to their aggregation, and the white prompt emission is due to their blue fluorescence and yellow RTP dual‐emissive nature. The RTP emission of TA‐CDs powder was highly stable under grinding, which is very rare amongst traditional pure organic RTP materials. To employ the unique characteristics of TA‐CDs, advanced anti‐counterfeiting and information encryption methodologies (water‐stimuli‐response producing RTP) were preliminarily investigated.  相似文献   

19.
Owing to the remarkable physicochemical properties such as hydrophobicity, conductivity, elasticity, and light weight, graphene‐based materials have emerged as one of the most appealing carbon allotropes in materials science and chemical engineering. Unfortunately, pristine graphene materials lack functional groups for further modification, severely hindering their practical applications. To render graphene materials with special characters for different applications, graphene oxide or reduced graphene oxide has been functionalized with different organic agents and assembled together, via covalent binding and various noncovalent forces such as π–π interaction, electrostatic interaction, and hydrogen bonding. In this review, we briefly discuss the state‐of‐the‐art synthetic strategies and properties of organic‐functionalized graphene‐based materials, and then, present the prospective applications of organic‐functionalized graphene‐based materials in sample preparation.  相似文献   

20.
Porphyrins have been investigated for a long time in various fields of chemistry owing to their excellent redox and optical properties. Structural isomers of porphyrins have been synthesized, namely, porphycene, hemiporphycene, and corrphycene. Although the number of studies on these structural isomers is limited, they exhibit interesting properties suitable for various applications such as photovoltaic devices, photocatalysts, and photodynamic therapy. In the present review, we summarized their photoinduced electron‐transfer processes, which are key steps of various photofunctions. Their electrochemical and photophysical properties are summarized as basic properties for the electron transfer. Furthermore, differences among these isomers in the electron‐transfer processes are clarified, and its origin has been discussed on the basis of their molecular structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号