首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By using 5.75 and 47.5 mT nuclear magnetic resonance (NMR) spectroscopy, up to 105‐fold sensitivity enhancement through signal amplification by reversible exchange (SABRE) was enabled, and subsecond temporal resolution was used to monitor an exchange reaction that resulted in the buildup and decay of hyperpolarized species after parahydrogen bubbling. We demonstrated the high‐resolution low‐field proton magnetic resonance imaging (MRI) of pyridine in a 47.5 mT magnetic field endowed by SABRE. Molecular imaging (i.e. imaging of dilute hyperpolarized substances rather than the bulk medium) was conducted in two regimes: in situ real‐time MRI of the reaction mixture (in which pyridine was hyperpolarized), and ex situ MRI (in which hyperpolarization decays) of the liquid hyperpolarized product. Low‐field (milli‐Tesla range, e.g. 5.75 and 47.5 mT used in this study) parahydrogen‐enhanced NMR and MRI, which are free from the limitations of high‐field magnetic resonance (including susceptibility‐induced gradients of the static magnetic field at phase interfaces), potentially enables new imaging applications as well as differentiation of hyperpolarized chemical species on demand by exploiting spin manipulations with static and alternating magnetic fields.  相似文献   

2.
Dissolution dynamic nuclear polarization (DNP) enables high‐sensitivity solution‐phase NMR experiments on long‐lived nuclear spin species such as 15N and 13C. This report explores certain features arising in solution‐state 1H NMR upon polarizing low‐γ nuclear species. Following solid‐state hyperpolarization of both 13C and 1H, solution‐phase 1H NMR experiments on dissolved samples revealed transient effects, whereby peaks arising from protons bonded to the naturally occurring 13C nuclei appeared larger than the typically dominant 12C‐bonded 1H resonances. This enhancement of the satellite peaks was examined in detail with respect to a variety of mechanisms that could potentially explain this observation. Both two‐ and three‐spin phenomena active in the solid state could lead to this kind of effect; still, experimental observations revealed that the enhancement originates from 13C→1H polarization‐transfer processes active in the liquid state. Kinetic equations based on modified heteronuclear cross‐relaxation models were examined, and found to well describe the distinct patterns of growth and decay shown by the 13C‐bound 1H NMR satellite resonances. The dynamics of these novel cross‐relaxation phenomena were determined, and their potential usefulness as tools for investigating hyperpolarized ensembles and for obtaining enhanced‐sensitivity 1H NMR traces was explored.  相似文献   

3.
An important development in the field of NMR spectroscopy has been the advent of hyperpolarization approaches, capable of yielding nuclear spin states whose value exceeds by orders‐of‐magnitude what even the highest‐field spectrometers can afford under Boltzmann equilibrium. Included among these methods is an ex situ dynamic nuclear polarization (DNP) approach, which yields liquid‐phase samples possessing spin polarizations of up to 50 %. Although capable of providing an NMR sensitivity equivalent to the averaging of about 1 000 000 scans, this methodology is constrained to extract its “superspectrum” within a single—or at most a few—transients. This makes it a poor starting point for conventional 2D NMR acquisition experiments, which require a large number of scans that are identical to one another except for the increment of a certain t1 delay. It has been recently suggested that by merging this ex situ DNP approach with spatially encoded “ultrafast” methods, a suitable starting point could arise for the acquisition of 2D spectra on hyperpolarized liquids. Herein, we describe the experimental principles, potential features, and current limitations of such integration between the two methodologies. For a variety of small molecules, these new hyperpolarized ultrafast experiments can, for equivalent overall durations, provide heteronuclear correlation spectra at significantly lower concentrations than those currently achievable by conventional 2D NMR acquisitions. A variety of challenges still remain to be solved before bringing the full potential of this new integrated 2D NMR approach to fruition; these outstanding issues are discussed.  相似文献   

4.
5.
6.
Signal amplification by reversible exchange (SABRE) is a promising method to increase the sensitivity of nuclear magnetic resonance (NMR) experiments. However, SABRE‐enhanced 1H NMR signals are short lived, and SABRE is often used to record 1D NMR spectra only. When the sample of interest is a complex mixture, this results in severe overlaps for 1H spectra. In addition, the use of a co‐substrate, whose signals may obscure the 1H spectra, is currently the most efficient way to lower the detection limit of SABRE experiments. Here, we describe an approach to obtain clean, SABRE‐hyperpolarized 2D 1H NMR spectra of mixtures of small molecules at sub‐millimolar concentrations in a single scan. The method relies on the use of para‐hydrogen together with a deuterated co‐substrate for hyperpolarization and ultrafast 2D NMR for acquisition. It is applicable to all substrates that can be polarized with SABRE.  相似文献   

7.
Biradicaloids attract attention as a novel class of reagents that can activate small molecules such as H2, ethylene and CO2. Herein, we study activation of parahydrogen (nuclear spin-0 isomer of H2) by a number of 4- and 5-membered pnictogen biradicaloids based on hetero-cyclobutanediyl [X(μ-NTer)2Z] and hetero-cyclopentanediyl [X(μ-NTer)2ZC(NDmp)] moieties (X,Z=P,As; Ter=2,6-Mes2−C6H3, Dmp=2,6-Me2−C6H3). The concerted mechanism of this reaction allowed observing strong nuclear spin hyperpolarization effects in 1H and 31P NMR experiments. Signal enhancements from two to four orders of magnitude were detected at 9.4 T depending on the structure. It is demonstrated that 4-membered biradicaloids activate H2 reversibly, leading to SABRE (signal amplification by reversible exchange) hyperpolarization of biradicaloids themselves and their H2 adducts. In contrast, the 5-membered counterparts demonstrate rather irreversible parahydrogen activation resulting in hyperpolarized H2 adducts only. Kinetic measurements provided parameters to support experimental observations.  相似文献   

8.
Hyperpolarized magnetic resonance spectroscopy enables quantitative, non‐radioactive, real‐time measurement of imaging probe biodistribution and metabolism in vivo. Here, we investigate and report on the development and characterization of hyperpolarized acetylsalicylic acid (aspirin) and its use as a nuclear magnetic resonance (NMR) probe. Aspirin derivatives were synthesized with single‐ and double‐13C labels and hyperpolarized by dynamic nuclear polarization with 4.7 % and 3 % polarization, respectively. The longitudinal relaxation constants (T1) for the labeled acetyl and carboxyl carbonyls were approximately 30 seconds, supporting in vivo imaging and spectroscopy applications. In vitro hydrolysis, transacetylation, and albumin binding of hyperpolarized aspirin were readily monitored in real time by 13C‐NMR spectroscopy. Hyperpolarized, double‐labeled aspirin was well tolerated in mice and could be observed by both 13C‐MR imaging and 13C‐NMR spectroscopy in vivo.  相似文献   

9.
10.
Symmetry breaking of parahydrogen using iridium catalysts converts singlet spin order into observable hyperpolarization. In this contribution, iridium catalysts are designed to exhibit asymmetry in their hydrides, regulated by in situ generation of deuterated ammonia governed by ammonium buffers. The concentrations of ammonia (N) and pyridine (P) provide a handle to generate a variety of stereo-chemically asymmetric N-heterocyclic carbene iridium complexes, ligating either [3xP], [2xP;N], [P;2xN] or [3xN] in an octahedral SABRE type configuration. The non-equivalent hydride positions, in correspondence with the ammonium buffer solutions, enables to extend singlet-triplet or mixing at high magnetic field and experimentally induce prolonged generation of non-equilibrium longitudinal two-spin order. This long-lasting magnetization can be exploited in hyperpolarized 2D-OPSY-COSY experiments providing direct structural information on the catalyst using a single contact with parahydrogen. Separately, field cycling revealed hyperpolarization properties in low-field conditions. Controlling catalyst stereochemistry by introducing small and deuterated ligands, such as deuterated ammonia, simplifies the spin-system. This is shown to unify experimental and theoretically derived field-sweep experiments for four-spin systems.  相似文献   

11.
Signal amplification by reversible exchange (SABRE) can enhance nuclear magnetic resonance signals by several orders of magnitude. However, until now this was limited to a small number of model target molecules. Here, a new convenient method for SABRE activation applicable to a variety of synthetic model oligopeptides is demonstrated. For the first time, a highly SABRE‐active pyridine‐based biocompatible molecular framework is incorporated into synthetic oligopeptides. The SABRE activity is preserved, demonstrating the importance of such earmarking. Finally, a crucial exchange process responsible for SABRE activity is identified and discussed.  相似文献   

12.
Recently developed dynamic nuclear polarization (DNP) technology offers the potential of increasing the NMR sensitivity of even rare nuclei for biological imaging applications. Hyperpolarized 89Y is an ideal candidate because of its narrow NMR linewidth, favorable spin quantum number (I= ), and long longitudinal relaxation times (T1). Strong NMR signals were detected in hyperpolarized 89Y samples of a variety of yttrium complexes. A dataset of 89Y NMR data composed of 23 complexes with polyaminocarboxylate ligands was obtained using hyperpolarized 89Y measurements or 1H,89Y‐HMQC spectroscopy. These data were used to derive an empirical equation that describes the correlation between the 89Y chemical shift and the chemical structure of the complexes. This empirical correlation serves as a guide for the design of 89Y sensors. Relativistic (DKH2) DFT calculations were found to predict the experimental 89Y chemical shifts to a rather good accuracy.  相似文献   

13.
Fluorinated substances are important in chemistry, industry, and the life sciences. In a new approach, parahydrogen‐induced polarization (PHIP) is applied to enhance 19F MR signals of (perfluoro‐n‐hexyl)ethene and (perfluoro‐n‐hexyl)ethane. Unexpectedly, the end‐standing CF3 group exhibits the highest amount of polarization despite the negligible coupling to the added protons. To clarify this non‐intuitive distribution of polarization, signal enhancements in deuterated chloroform and acetone were compared and 19F–19F NOESY spectra, as well as 19F T1 values were measured by NMR spectroscopy. By using the well separated and enhanced signal of the CF3 group, first 19F MR images of hyperpolarized linear semifluorinated alkenes were recorded.  相似文献   

14.
Spin‐noise appeal : Detection of NMR spin‐noise is very appealing when dilute hyperpolarized species are considered. Continuous monitoring of the noise absorption at the Larmor frequency enables determination of T1 and T2*, independently of the static magnetic field. An inductively coupled microcoil located inside the NMR tube (see picture) allows acquisition of 129Xe spin‐noise spectra without radio‐frequency excitation.

  相似文献   


15.
A series of novel bioactive derivatives of the sunflower trypsin inhibitor‐1 (SFTI‐1) suitable for hyperpolarization by parahydrogen‐induced polarization (PHIP) was developed. The PHIP activity was achieved by labeling with L ‐propargylglycine, O‐propargyl‐L ‐tyrosine, or 4‐pentynoic acid. 1H NMR signal enhancements (SE) of up to a factor of 70 were achieved in aqueous solution. We found that an isolated spatial location of the triple bond within the respective label and its accessibility for the hydrogenation catalyst are essential factors for the degree of signal enhancement.  相似文献   

16.
Incomplete knowledge of the longitudinal relaxation time constant (T1) leads to incorrect assumptions in quantitative kinetic models of cellular systems, studied by hyperpolarized real‐time NMR. Using an assay that measures the intracellular signal of small carboxylic acids in living cells, the intracellular T1 of the carboxylic acid moiety of acetate, keto‐isocaproate, pyruvate, and butyrate was determined. The intracellular T1 is shown to be up to four‐fold shorter than the extracellular T1. Such a large difference in T1 values between the inside and the outside of the cell has significant influence on the quantification of intracellular metabolic activity. It is expected that the significantly shorter T1 value of the carboxylic moieties inside cells is a result of macromolecular crowding. An artificial cytosol has been prepared and applied to predict the T1 of other carboxylic acids. We demonstrate the value of this prediction tool.  相似文献   

17.
Parahydrogen induced polarization was employed to prepare a relatively long‐lived correlated nuclear spin state between methylene and methyl protons in propane gas. Conventionally, such states are converted into a strong NMR signal enhancement by transferring the reaction product to a high magnetic field in an adiabatic longitudinal transport after dissociation engenders net alignment (ALTADENA) experiment. However, the relaxation time T1 of ~0.6 s of the resulting hyperpolarized propane is too short for potential biomedical applications. The presented alternative approach employs low‐field MRI to preserve the initial correlated state with a much longer decay time TLLSS=(4.7±0.5) s. While the direct detection at low‐magnetic fields (e.g. 0.0475 T) is challenging, we demonstrate here that spin‐lock induced crossing (SLIC) at this low magnetic field transforms the long‐lived correlated state into an observable nuclear magnetization suitable for MRI with sub‐millimeter and sub‐second spatial and temporal resolution, respectively. Propane is a non‐toxic gas, and therefore, these results potentially enable low‐cost high‐resolution high‐speed MRI of gases for functional imaging of lungs and other applications.  相似文献   

18.
Current metabolomics approaches utilize cellular metabolite extracts, are destructive, and require high cell numbers. We introduce here an approach that enables the monitoring of cellular metabolism at lower cell numbers by observing the consumption/production of different metabolites over several kinetic data points of up to 48 hours. Our approach does not influence cellular viability, as we optimized the cellular matrix in comparison to other materials used in a variety of in‐cell NMR spectroscopy experiments. We are able to monitor real‐time metabolism of primary patient cells, which are extremely sensitive to external stress. Measurements are set up in an interleaved manner with short acquisition times (approximately 7 minutes per sample), which allows the monitoring of up to 15 patient samples simultaneously. Further, we implemented our approach for performing tracer‐based assays. Our approach will be important not only in the metabolomics fields, but also in individualized diagnostics.  相似文献   

19.
Samples prepared following dissolution dynamic nuclear polarization (DNP) enable the detection of NMR spectra from low‐γ nuclei with outstanding sensitivity, yet have limited use for the enhancement of abundant species like 1H nuclei. Small‐ and intermediate‐sized molecules, however, show strong heteronuclear cross‐relaxation effects: spontaneous processes with an inherent isotopic selectivity, whereby only the 13C‐bonded protons receive a polarization enhancement. These effects are here combined with a recently developed method that delivers homonuclear‐decoupled 1H spectra in natural abundance samples based on heteronuclear couplings to these same, 13C‐bonded nuclei. This results in the HyperBIRD methodology; a single‐shot combination of these two effects that can simultaneously simplify and resolve complex, congested 1H NMR spectra with many overlapping spin multiplets, while achieving 50–100 times sensitivity enhancements over conventional thermal counterparts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号