首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
We report a highly efficient iodine adsorbent achieved by rational design of a porous azo‐bridged porphyrin–phthalocyanine network (AzoPPN), which was synthesized by a catalyst‐free coupling reaction between free‐base 5,10,15,20‐tetrakis(4‐nitrophenyl)‐porphyrin and nickel tetraaminophthlocyanine. AzoPPN has a permanent porous structure and plenty of porphyrin and phthalocyanine units in the skeleton as effective sorption sites. It displays excellent adsorption of iodine vapor up to 290 wt. % and also shows remarkable capability as adsorbent for iodine in solution. This strategy of combining physisorption with chemisorption in one adsorbent will pave the way for the development of new materials for iodine capture.  相似文献   

2.
The synthesis of highly microporous, epoxy‐functionalized porous organic polymers (ep‐POPs) by a one‐pot, catalyst‐free Diels–Alder cycloaddition polymerization is reported. The high oxygen content of ep‐POPs offer efficient hydrogen‐bonding sites for water molecules, thus leading to high water‐uptake capacities up to 39.2–42.4 wt % under a wide temperature range of 5–45 °C, which covers the span of climatic conditions and manufacturing applications in which such materials might be used. Importantly, ep‐POPs demonstrated regeneration temperatures as low as 55 °C, as well as excellent water stability, recyclability, and high specific surface areas up to 852 m2 g−1.  相似文献   

3.
Miscibility and crystallization behavior have been studied for polytetrafluoroethylene(PTFE)/poly(tetrafluoroethylene‐co‐2 mol‐% perfluoropropylvinyl ether)(PFA copolymer) blends by the use of differential scanning calorimetry, electron microscopy, X‐ray diffractometry and dynamic mechanical spectroscopy. In the amorphous phase, the two components were miscible with each other over all blending ratios, and it was found that the PFA copolymer was compatible with the PTFE matrix, when the PFA content is ≤ 50 wt.‐%, while PTFE was mixed in the PFA matrix when the PFA content is >50 wt.‐%. All the blends were crystalline as well as PTFE and PFA. The crystallization behavior was closely connected to the polymer composition of the amorphous state described above. It was conjectured that the crystallization is controlled by the PTFE matrix when the PFA content is ≤ 50 wt.‐%, while by the PFA matrix when the PFA content is >50 wt.‐%.  相似文献   

4.
A monoclinic δ‐clathrate form of syndiotactic polystyrene (s‐PS) with carvacrol (a relevant natural phenolic antimicrobial) has been prepared and characterized by X‐ray diffraction. Very informative are Fourier transform infrared spectra, in particular their OH stretching region that shows a narrow peak and a broad band, corresponding to carvacrol molecules being isolated guest of the co‐crystalline phase or dissolved in the amorphous phase, respectively. Analogous spectral features allow discriminating, for many different s‐PS guests, between molecules being in crystalline or in amorphous phases. s‐PS co‐crystalline films with carvacrol molecules being prevailingly (more than 90%) guest of the co‐crystalline phase have been prepared, even for high carvacrol content (up to 10–11 wt %). The location of most antimicrobial molecules in the crystalline phase assures a decrease of desorption diffusivity of two to three orders and hence long‐term antimicrobial release. © 2014 Wiley Periodicals, Inc. J. Polym. Sci. Part B: Polym. Phys. 2014 , 52, 657–665  相似文献   

5.
Novel zinc(II), copper(II), and cobalt(II) complexes of the Schiff base derived from 2‐hydroxy‐1‐naphthaldehyde and D, L ‐selenomethionine were synthesized and characterized by elemental analysis, IR, electronic spectra, conductance measurements, magnetic measurements and powder XRD. The analytical data showed the composition of the metal complex to be ML(H2O), where L is the Schiff base ligand and M = Co(II), Cu(II) and Zn(II). IR results confirmed the tridentate binding of the Schiff base ligand involving azomethine nitrogen, naphthol oxygen and carboxylato oxygen atoms. 1H NMR spectral data of lithium salt of the Schiff base ligand [Li(HL)] and ZnL(H2O) agreed with the proposed structures. The conductivity values of complexes between 12.50 and 15.45 S cm2 mol?1 in DMF suggested the presence of non‐electrolyte species. The powder XRD studies indicated that Co(II) complex is amorphous, whereas Cu(II) and Zn(II) complexes are crystalline. The results of antibacterial and antifungal screening studies indicated that Li(HL) and its metal complexes are active, but CuL(H2O) is most active among them. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
An innovative technique to obtain high‐surface‐area mesostructured carbon (2545 m2 g?1) with significant microporosity uses Teflon as the silica template removal agent. This method not only shortens synthesis time by combining silica removal and carbonization in a single step, but also assists in ultrafast removal of the template (in 10 min) with complete elimination of toxic HF usage. The obtained carbon material (JNC‐1) displays excellent CO2 capture ability (ca. 26.2 wt % at 0 °C under 0.88 bar CO2 pressure), which is twice that of CMK‐3 obtained by the HF etching method (13.0 wt %). JNC‐1 demonstrated higher H2 adsorption capacity (2.8 wt %) compared to CMK‐3 (1.2 wt %) at ?196 °C under 1.0 bar H2 pressure. The bimodal pore architecture of JNC‐1 led to superior supercapacitor performance, with a specific capacitance of 292 F g?1 and 182 F g?1 at a drain rate of 1 A g?1 and 50 A g?1, respectively, in 1 m H2SO4 compared to CMK‐3 and activated carbon.  相似文献   

7.
Functional porous organic polymers for heterogeneous catalysis   总被引:1,自引:0,他引:1  
Porous organic polymers (POPs), a class of highly crosslinked amorphous polymers possessing nano-pores, have recently emerged as a versatile platform for the deployment of catalysts. The bottom-up approach for porous organic polymer synthesis provides the opportunity for the design of polymer frameworks with various functionalities, for their use as catalysts or ligands. This tutorial review focuses on the framework structures and functionalities of catalytic POPs. Their structural design, functional framework synthesis and catalytic reactions are discussed along with some of the challenges.  相似文献   

8.
Highly enantioselective cationic iridium‐catalyzed hydroarylation of bicycloalkenes, by carbonyl‐directed C H bond cleavage, was accomplished using a newly synthesized sulfur‐linked bis(phosphoramidite) ligand (S‐Me‐BIPAM). The reaction provides alkylated acetophenone or benzamide derivatives in moderate to excellent yields and good to excellent enantioselectivities. Notably, the hydroarylation reaction of 2‐norbornene with N,N‐dialkylbenzamide proceeds with excellent enantioselectivity (up to 99 % ee) and high selectivity for the mono‐ortho‐alkylation product.  相似文献   

9.
We present the results of classical dynamics calculations performed to study the photodissociation of water in crystalline and amorphous ice surfaces at a surface temperature of 10 K. A modified form of a recently developed potential model for the photodissociation of a water molecule in ice [S. Andersson et al., Chem. Phys. Lett. 408, 415 (2005)] is used. Dissociation in the top six monolayers is considered. Desorption of H(2)O has a low probability (less than 0.5% yield per absorbed photon) for both types of ice. The final outcome strongly depends on the original position of the photodissociated molecule. For molecules in the first bilayer of crystalline ice and the corresponding layers in amorphous ice, desorption of H atoms dominates. In the second bilayer H atom desorption, trapping of the H and OH fragments in the ice, and recombination of H and OH are of roughly equal importance. Deeper into the ice H atom desorption becomes less important and trapping and recombination dominate. Motion of the photofragments is somewhat more restricted in amorphous ice. The distribution of distances traveled by H atoms in the ice peaks at 6-7 Angstroms with a tail going to about 60 Angstroms for both types of ice. The mobility of OH radicals is low within the ice with most probable distances traveled of 2 and 1 Angstrom for crystalline and amorphous ices, respectively. OH is, however, quite mobile on top of the surface, where it has been found to travel more than 80 Angstroms. Simulated absorption spectra of crystalline ice, amorphous ice, and liquid water are found to be in very good agreement with the experiments. The outcomes of photodissociation in crystalline and amorphous ices are overall similar, but with some intriguing differences in detail. The probability of H atoms desorbing is 40% higher from amorphous than from crystalline ice and the kinetic-energy distribution of the H atoms is on average 30% hotter for amorphous ice. In contrast, the probability of desorption of OH radicals from crystalline ice is much higher than that from amorphous ice.  相似文献   

10.
Emerging technological applications for complex polymers require insight into the dynamics of these materials from a molecular and nanostructural viewpoint. To characterize the orientational response at these length scales, we developed a versatile rheooptical Fourier transform infrared (FTIR) spectrometer by combining rheometry, polarimetry, and FTIR spectroscopy. This instrument is capable of measuring linear infrared dichroism spectra during both small‐strain dynamic deformation and large‐strain irreversible deformation over a wide temperature range. The deformation response of quenched and slow‐cooled isotactic polypropylene (iPP) is investigated. In quenched iPP, under dynamic oscillatory strain at an amplitude of ~0.1%, the dichroism from the orientation of the amorphous chains is appreciably less than that from the crystalline region. At large irreversible strains, we measured the dichroic response for 12 different peaks simultaneously and quantitatively. The dichroism from the crystalline peaks is strong as compared to amorphous peaks. In the quenched sample, the dichroism from the crystalline region saturates at 50% strain, followed by a significant increase in the amorphous region dichroism. This is consistent with the notion that the crystalline regions respond strongly before the yield point, whereas the majority of postyielding orientation occurs in the amorphous region. Our results also suggest that the 841 cm?1 peak may be especially sensitive to the ‘smectic’ region orientation in the quenched sample. The response of the slow‐cooled sample at 70 °C is qualitatively similar but characterized by a stronger crystalline region dichroism and a weaker amorphous region dichroism, consistent with the higher crystallinity of this sample, and faster chain relaxation at 70 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2539–2551, 2002  相似文献   

11.
Desiccant driven dehumidification for maintaining the proper humidity levels and atmospheric water capture with minimum energy penalty are important aspects in heat pumps, refrigeration, gas and liquid purifications, gas sensing, and clean water production for improved human health and comfort. Water adsorption by using nanoporous materials has emerged as a viable alternative to energy-intensive industrial processes, thus understanding the significance of their porosity, high surface areas, vast pore volumes, chemical and structural features relative to the water adsorption is quite important. In this review article, important features of nanoporous materials are presented, including zeolites, porous carbons, as well as crystalline and amorphous porous organic polymers (POPs) to define the interactions between the water molecules and the polar/non-polar functional groups on the surface of these nanoporous materials. In particular, focus is placed on the recent developments in POPs in the context of water capture as a result of their remarkable stability towards water and wide range of available synthetic routes and building blocks for their synthesis. We also highlighted recent approaches to increase the water sorption capacity of POPs by modifying their structure, morphology, porosity, and chemical functionality while emphasizing their promising future in this emerging area.  相似文献   

12.
The first Negishi cross‐coupling of amides for the synthesis of versatile diaryl ketones by selective C?N bond activation under exceedingly mild conditions is reported. The cross‐coupling was accomplished with bench‐stable, inexpensive precatalyst [Ni(PPh3)2Cl2] that shows high functional‐group tolerance and enables the synthesis of highly functionalized diaryl ketone motifs. The coupling occurred with excellent chemoselectivity favoring the ketone (cf. biaryl) products. Notably, this process represents the mildest conditions for amide N?C bond activation accomplished to date (room temperature, <10 min). Considering the versatile role of polyfunctional biaryl ketone linchpins in modern organic synthesis, availability, and excellent functional‐group tolerance of organozinc reagents, this strategy provides a new platform for amide N?C bond/organozinc cross‐coupling under mild conditions.  相似文献   

13.
Radioactive iodine is a notorious pollutant in gas radioactive nuclear waste due to its radiation hazard, volatility, chemical toxicity, and high mobility. Therefore, developing a material with high efficiency-specific iodine capture is significant. Covalent organic framework(COF) has attracted significant attention as a new crystalline porous organic material. Due to its large specific surface and high chemical stability, it is an excellent alternative to adsorbents. Herein, we report a chemically stable two-dimensional COF(termed JUC-609) with specific adsorption of iodine. Adsorption experiments show that JUC-609 has an excellent iodine adsorption capacity as high as 5.9 g/g under 353 K and normal pressure condition, and iodine adsorption after multiple cycles is still maintained. Our study thus promotes the potential application of COFs in the field of environment-related applications.  相似文献   

14.
Comparative analysis of volatile constituents between recipe jingfangsan and its single herbs was performed by GC‐MS combined with alternative moving window factor analysis (AMWFA), a new chemometric resolution method. Identification of the compounds was also assisted by comparison of temperature‐programmed retention indices (PTRIs) on the OV‐1 column with authentic samples. In total, 36, 29, and 42 volatile components in essential oil of Herba schizonepetae (HS), Radix saposhnikoviae (RS), and the recipe were respectively determined qualitatively and quantitatively, accounting for 81.80, 82.62 and 85.98% total contents of volatile oil of HS, RS, and the recipe respectively. Analysis by the method of AMWFA indicates that there are 22 common volatile constituents between the recipe and single herbal medicine HS, and 14 common volatile constituents between the recipe and single herb medicine RS. The experimental results also show that the volatile components of the recipe in number are almost addition of that of two single herbal medicines HS and RS, and are mainly from the single herbal medicine HS.  相似文献   

15.
Desorption kinetics of ethene, propene, and butadiene from films exhibiting axially oriented nanoporous‐crystalline δ phases of syndiotactic polystyrene (s‐PS) have been followed by gravimetric and infrared linear dichroism measurements. The reported data can be rationalized by assuming that, after the initial desorption mainly involving molecules absorbed in the amorphous phase, most gaseous molecules are included as guest in the nanoporous‐crystalline phase. This allows establishing a simple method to evaluate guest partition between nanoporous‐crystalline and amorphous polymeric phases, which possibly can be applied for most volatile guest molecules. The described method also allows establishing the presence of one guest molecule (ethene, propene, or butadiene) per cavity of the nanoporous δ form. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

16.
《Electrophoresis》2018,39(14):1771-1776
An ionic liquid‐based headspace in‐tube liquid‐phase microextraction (IL‐HS‐ITLPME) in‐line coupled with CE is proposed. The method is capable of quantifying trace amounts of phenols in environmental water samples. In the newly developed method, simply by placing a capillary injected with ionic liquids (IL) in the HS above the aqueous sample, volatile phenols were extracted into the IL acceptor phase in the capillary. After extraction, electrophoresis of the phenols in the capillary was carried out. Extraction parameters such as the extraction time, extraction temperature, ionic strength, volume of the sample solution, and IL types were systematically investigated. Under the optimized conditions, enrichment factors for four phenols were from 1510 to 1985. The proposed method provided a good linearity, low limits of detection (below 5.0 ng/mL), and good repeatability of the extractions (RSDs below 6.7%, n = 6). This method was then utilized to analyze two real environmental samples of Xiaoxi Lake and tap water, obtaining acceptable recoveries and precisions. Compared with the usual HS‐ITLPME for CE, IL‐HS‐ITLPME‐CE is a simple, low cost, fast, and environmentally friendly preconcentration technique.  相似文献   

17.
A versatile and robust mechanochemical route to Aldehyde–Schiff base conversions has been established for a broad range of aldehydes via a simple cogrinding in mortar with a pestle under a solvent‐free, as well as solvent‐assisted, environment. The extent of amines reactivity under these conditions has also been explored, along with an examination of the possible connection between reactivity and electronic substituent effects. Results obtained demonstrated that the solvent‐free mechanochemical conversion of p‐toluidine and aromatic aldehydes to the corresponding Schiff bases proceeded more smoothly than the corresponding synthesis with 4‐aminobenzonitrile. The present approach not only provides good to excellent yields but also eliminates the disadvantages of the traditional synthesis of Schiff bases, such as the use of hazardous solvents, more or less demand of expensive catalysts, and looking for optimization on reaction conditions.  相似文献   

18.
Gelation mechanism is of utmost importance to the rational design of supramolecular hydrogelators. Although both kinetic and thermodynamic controlled self‐assembly processes have been widely studied in hydrogels, the formation relationship between crystalline and amorphous gel networks still remains ambiguous. Herein, a gelation transformation from a kinetic to a thermodynamic process was achieved by balancing the rigidity and flexibility of the inorganic–organic co‐assemblies. By using polyoxometalates and zwitterionic amphiphiles, the transition morphologies between crystalline and amorphous hydrogel networks were evidenced for the first time, as ordered wormlike micelles. Given the versatile applications of hydrogels in biological systems and materials science, these findings may highlight the potential of inorganic–organic binary supramolecular hydrogelators and fill in the blank between kinetic and thermodynamic controlled gelation processes.  相似文献   

19.
Hierarchically structured zeolites (HSZs) have gained much academic and industrial interest owing to their multiscale pore structures and consequent excellent performances in varied chemical processes. Although a number of synthetic strategies have been developed in recent years, the scalable production of HSZs single crystals with penetrating and three‐dimensionally (3‐D) interconnected mesopore systems but without using a mesoscale template is still a great challenge. Herein, based on a steam‐assisted crystallization (SAC) method, we report a facile and scalable strategy for the synthesis of single‐crystalline ZSM‐5 HSZs by using only a small amount of micropore‐structure‐directing agents (i.e., tetrapropylammonium hydroxide). The synthesized materials exhibited high crystallinity, a large specific surface area of 468 m2 g?1, and a pore volume of 0.43 cm3 g?1 without sacrificing the microporosity (≈0.11 cm3 g?1) in a product batch up to 11.7 g. Further, a kinetically controlled nucleation–growth mechanism is proposed for the successful synthesis of single‐crystalline ZSM‐5 HSZs with this novel process. As expected, compared with the conventional microporous ZSM‐5 and amorphous mesoporous Al‐MCM‐41 counterparts, the synthesized HSZs exhibited significantly enhanced activity and stability and prolonged lifetime in model reactions, especially when bulky molecules were involved.  相似文献   

20.
Layers of glassy methanolic (aqueous) solutions of KHCO3 and HCl were deposited sequentially at 78 K on a CsI window, and their reaction on heating in vacuo in steps from 78 to 230 K was followed by Fourier transform infrared (FTIR) spectroscopy. After removal of solvent and excess HCl, IR spectra revealed formation of two distinct states of amorphous carbonic acid (H2CO3), depending on whether KHCO3 and HCl had been dissolved in methanol or in water, and of their phase transition to either crystalline alpha- or beta-H2CO3. The main spectral features in the IR spectra of alpha- and beta-H2CO3 are observable already in those of the two amorphous H2CO3 forms. This indicates that H-bond connectivity or conformational state in the two crystalline phases is on the whole already developed in the two amorphous forms. The amorphous nature of the precursors to the two crystalline polymorphs is confirmed using powder X-ray diffraction. These diffractograms also show that alpha- and beta-amorphous H2CO3 are two distinct structural states. The variety of structural motifs found within a few kJ/mol in a computational search for possible crystal structures provides a plausible rationalization for (a) the observation of more than one amorphous form and (b) the retention of the motif observed in the amorphous form in the corresponding crystalline form. The polyamorphism inferred for carbonic acid from our FTIR spectroscopic and powder X-ray diffraction studies is special since two different crystalline states are linked to two distinct amorphous states. We surmise that the two amorphous states of H2CO3 are connected by a first-order-like phase transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号