首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactions of pyrimidine‐phosphine ligand N‐[(diphenylphosphino)methyl]‐2‐pyrimidinamine ( L ) with various metal salts of PtII, PdII and CuI provide three new halide metal complexes, Pt2Cl4(μ‐L)2·2CH2Cl2 ( 1 ), Pd2Cl4(μ‐L)2 ( 2 ), and [Cu2(μ‐I)2L2]n ( 3 ). Single crystal X‐ray diffraction studies show that complexes 1 and 2 display a similar bimetallic twelve‐membered ring structure, while complex 3 consists of one‐dimensional polymeric chains, which are further connected into a 2‐D supramolecular framework through hydrogen bonds. In the binuclear complexes 1 and 2 , the ligand L serves as a bridge with the N and P as coordination atoms, but in the polymeric complex 3 , both bridging and chelating modes are adopted by the ligand. The spectroscopic properties of complexes 1 ‐ 3 as well as L have been investigated, in which complex 3 exhibits intense photoluminescence originating from intraligand charge transfer (ILCT) π→π* and metal‐to‐ligand charge‐transfer (MLCT) excited states both in acetonitrile solution and solid state, respectively.  相似文献   

2.
Polynuclear Pd(II) and Ni(II) complexes of macrocyclic polyamine 3,6,9,16,19,22‐hexaazatricyclo[22.2.2.211,14]‐triaconta 11,13,24,26(l),27,29‐hexaene (L) in solution were investigated by electrospray ionization mass spectrometry (ESIMS). For methanol solution of complexes M2LX4 (M = Pd(II) and Ni(II), X= Cl and I), two main clusters of peaks were observed which can be assigned to [M2LX3]+ and [M2LX2]2+. When Pd2LCl4 was treated with 2 or 4 mol of AgNO3, it gave rise formation of Pd2LCl2 (NO3)2 · H2O and [Pd2L(H2O)m(NO3)n](4‐n)+, respectively. ESMS spectra show that the dissociation of the former in the ionization process gave peaks of [Pd2LCl2]2+ and [(Pd2LCl2)NO3]+, while dissociation of the later gave the peaks of [Pd2L(CH3CO2)2]2+ and [Pd2L(CH3CO2)2](NO3) + in the presence of acetic acid. Similar species were observed for Pd2LI4 when treated with 4 mol of AgNO3. When [Pd2L · (H2O)m(NO3)n](4‐n)+ reacted with 2 mol of oxalate anions at 40°C, [Pd4L2(C2O4)2(NO3)2]2+ and [Pd4L2(C2O4)2 (NO3)]3+ were detected. This implies the formation of square‐planar molecular box Pd4L2(C2O4)2(NO3)4 in which C2O4? may act as bridging ligands as confirmed by crystal structure analysis. The dissociation form and the stability of complex cations in gaseous state are also discussed. This work provides an excellent example of the usefulness of ESIMS in the identification of metal complexes in solution.  相似文献   

3.
Complexation of 1,4‐phenylenebis(methylene) diisonicotinate, L1 , with cis‐protected PdII components, [Pd( L′ )(NO3)2], in an equimolar ratio yielded binuclear complexes, 1 a – d of [Pd2( L′ )2( L1 )2](NO3)4 formulation where L′ stands for ethylenediamine (en), tetramethylethylenediamine (tmeda), 2,2′‐bipyridine (bpy), and phenanthroline (phen). The combination of 4,4′‐bipyridine, L2 , with the cis‐protected PdII units is known to yield molecular squares, 2 a – d . However, 2 b – d coexist with the corresponding molecular triangles, 3 b – d . Combination of an equivalent each of the ligands L1 and L2 with two equivalents of cis‐protected PdII components in DMSO resulted in the D ‐shaped heteroligated complexes [Pd2( L′ )2( L1 )( L2 )](NO3)4, 4 a – d . Two units of the D ‐shaped complexes interlock, in a concentration dependent fashion, to form the corresponding [2]catenanes [Pd2( L′ )2( L1 )( L2 )]2(NO3)8, 5 a – d under aqueous conditions. Crystal structures of the macrocycle [Pd2(tmeda)2( L1 )( L2 )](PF6)4, 4 b′′ , and the catenane [Pd2(bpy)2( L1 )( L2 )]2(NO3)8, 5 c , provide unequivocal support for the proposed molecular architectures.  相似文献   

4.
In the centrosymmetric dinuclear anions of the title bimetallic complex, {[Mg(H2O)6][Cu2(C8H2NO7)2]·2H2O}n, each CuII ion is strongly coordinated by four O atoms in a distorted square‐planar geometry. Two of these O atoms belong to phenolate groups and the other two to carboxylate groups from 5‐nitro‐2‐oxidoisophthalate (L1) trianions, derived from 5‐nitrobenzene‐1,2,3‐tricarboxylic acid (O2N–H3L). The phenolate O atoms bridge the two CuII ions in the anion. In addition, each CuII cation interacts weakly with a symmetry‐related carboxylate O atom of an adjacent L1 ligand, giving a square‐pyramidal coordination geometry. The copper residue forms a ladder‐like linear coordination polymer via L1 ligands. The [Mg(H2O)6]2+ cations sit on centres of inversion. The polymeric anions, cations and free water molecules are self‐assembled into a three‐dimensional supramolecular network via O—H...O hydrogen bonds.  相似文献   

5.
In contrast to the UV‐photoinduced ligand photoionization of the flavonoid complexes of FeIII, redox reactions initiated in ligand‐to‐metal charge‐transfer excited states were observed on irradiation of the quercetin ( 1 ) and rutin ( 2 ) complexes of CuII. Solutions of complexes with stoichiometries [CuIIL2] (L=quercetin, rutin) and [CuII2Ln] (n=1, L=quercetin; n=3, L=rutin) were flash‐irradiated at 351 nm. Transient spectra observed in these experiments showed the formation of radical ligands corresponding to the one‐electron oxidation of L and the reduction of CuII to CuI. The radical ligands remained coordinated to the CuI centers, and the substitution reactions replacing them by solvent occurred with lifetimes τ<350 ns. These are lifetimes shorter than the known lifetimes (τ>1 ms) of the quercetin and rutin radical's decay.  相似文献   

6.
The structure of the title compound, [NiCu(CN)4(C10H8N2)(H2O)2]n or [{Cu(H2O)2}(μ‐C10H8N2)(μ‐CN)2{Ni(CN)2}]n, was shown to be a metal–organic cyanide‐bridged framework, composed essentially of –Cu–4,4′‐bpy–Cu–4,4′‐bpy–Cu– chains (4,4′‐bpy is 4,4′‐bipyridine) linked by [Ni(CN)4]2− anions. Both metal atoms sit on special positions; the CuII atom occupies an inversion center, while the NiII atom of the cyanometallate sits on a twofold axis. The 4,4′‐bpy ligand is also situated about a center of symmetry, located at the center of the bridging C—C bond. The scientific impact of this structure lies in the unique manner in which the framework is built up. The arrangement of the –Cu–4,4′‐bpy–Cu–4,4′‐bpy–Cu– chains, which are mutually perpendicular and non‐intersecting, creates large channels running parallel to the c axis. Within these channels, the [Ni(CN)4]2− anions coordinate to successive CuII atoms, forming zigzag –Cu—N[triple‐bond]C—Ni—C[triple‐bond]N—Cu– chains. In this manner, a three‐dimensional framework structure is constructed. To the authors' knowledge, this arrangement has not been observed in any of the many copper(II)–4,4′‐bipyridine framework complexes synthesized to date. The coordination environment of the CuII atom is completed by two water molecules. The framework is further strengthened by O—H...N hydrogen bonds involving the water molecules and the symmetry‐equivalent nonbridging cyanide N atoms.  相似文献   

7.
The new asymmetric ligand 2‐{5‐[(pyridin‐4‐ylmethyl)sulfanyl]‐1,3,4‐oxadiazol‐3‐yl}phenol (HL) has been used to synthesize the novel discrete title binuclear metallocycle, [Cu2(C14H10N3O2S)2(C5H7O2)2] or Cu2L2(acac)2 (acac is acetylacetonate). Each CuII centre is five‐coordinate and adopts a square‐pyramidal geometry. Two ligands are connected by two CuII cations to form the dinuclear metallocycle, which lies across a crystallographic inversion centre. Discrete molecules are linked into a two‐dimensional structure through weak Cu...S, C—H...π and π–π interactions.  相似文献   

8.
The complex Pd(μ-OOCMe)4Cu(OH2) · 2Pd3(μ-OOCMe)6 was synthesized and characterized by X-ray crystallography. In the heterometallic moiety of this complex, the PdII and CuII atoms are at an extraordinary short distance (2.521(3) Å). DFT quantum-chemical calculations of the geometric and electronic structure of a series of heterobinuclear paddlewheel complexes PdIIMII(μ-OOCMe)4L (M = ZnII, NiII, CuII, CoII, FeII; L = OH2 and NCH) and their formate analogues PdIIMII(μ-OOCH)4L (M = ZnII, NiII, FeII) showed that the extraordinary short Pd?M distance in all these complexes is caused only by the tightening effect of carboxylate bridges rather than by the metal-metal bond. The direct Pd-M interaction becomes possible only after removal of electrons from the antibonding orbitals and formation of oxidized complexes of the [PdIII(μ-OOCMe)4NiIII]2+ type.  相似文献   

9.
This article deals with the hitherto unexplored metal complexes of deprotonated 6,12‐di(pyridin‐2‐yl)‐5,11‐dihydroindolo[3,2‐b]carbazole (H2L). The synthesis and structural, optical, electrochemical characterization of dimeric [{RuIII(acac)2}2(μ‐L.?)]ClO4 ([ 1 ]ClO4, S=1/2), [{RuII(bpy)2}2(μ‐L.?)](ClO4)3 ([ 2 ](ClO4)3, S=1/2), [{RuII(pap)2}2(μ‐L2?)](ClO4)2 ([ 4 ](ClO4)2, S=0), and monomeric [(bpy)2RuII(HL?)]ClO4 ([ 3 ]ClO4, S=0), [(pap)2RuII(HL?)]ClO4 ([ 5 ]ClO4, S=0) (acac=σ‐donating acetylacetonate, bpy=moderately π‐accepting 2,2’‐bipyridine, pap=strongly π‐accepting 2‐phenylazopyridine) are reported. The radical and dianionic states of deprotonated L in isolated dimeric 1 +/ 2 3+ and 4 2+, respectively, could be attributed to the varying electronic features of the ancillary (acac, bpy, and pap) ligands, as was reflected in their redox potentials. Perturbation of the energy level of the deprotonated L or HL upon coordination with {Ru(acac)2}, {Ru(bpy)2}, or {Ru(pap)2} led to the smaller energy gap in the frontier molecular orbitals (FMO), resulting in bathochromically shifted NIR absorption bands (800–2000 nm) in the accessible redox states of the complexes, which varied to some extent as a function of the ancillary ligands. Spectroelectrochemical (UV/Vis/NIR, EPR) studies along with DFT/TD‐DFT calculations revealed (i) involvement of deprotonated L or HL in the oxidation processes owing to its redox non‐innocent potential and (ii) metal (RuIII/RuII) or bpy/pap dominated reduction processes in 1 + or 2 2+/ 3 +/ 4 2+/ 5 +, respectively.  相似文献   

10.
1‐Dimensional halocuprate(I) chains [(Cu2X4)2–]n (= [(CuX2)]n, X = Cl, Br, I) have been synthesized under hydrothermal conditions through in‐situ reduction of CuIIX2 with FeIIX2 or as phase pure materials through comproportionation of CuIIX2 or CuIIO with Cu0 metal in the presence of the respective aqueous hydrogen halide HX and a templating amine. Chains of trans edge‐sharing tetrahedra are obtained with piperazinium or ethylenediammonium dications, while the 4,4′‐bipyridinium dication gave chains of cis edge‐sharing tetrahedra. Two monoprotonated piperazinium groups act as cationic ligands (Hpipz+) towards copper atoms in a molecular [Cu4(μ‐Br6)(Hpipz)2] cluster. Electrical crystal conductivities of the halocuprate [(Cu2X4)2–]n (= [(CuX2)]n) chains (X = Cl, Br, I) are around 10–8 S · cm–1 at room temperature.  相似文献   

11.
A series of new heteroleptic MN2S2 transition metal complexes with M = Cu2+ for EPR measurements and as diamagnetic hosts Ni2+, Zn2+, and Pd2+ were synthesized and characterized. The ligands are N2 = 4, 4′‐bis(tert‐butyl)‐2, 2′‐bipyridine (tBu2bpy) and S2 =1, 2‐dithiooxalate, (dto), 1, 2‐dithiosquarate, (dtsq), maleonitrile‐1, 2‐dithiolate, or 1, 2‐dicyanoethene‐1, 2‐dithiolate, (mnt). The CuII complexes were studied by EPR in solution and as powders, diamagnetically diluted in the isostructural planar [NiII(tBu2bpy)(S2)] or[PdII(tBu2bpy)(S2)] as well as in tetrahedrally coordinated[ZnII(tBu2bpy)(S2)] host structures to put steric stress on the coordination geometry of the central CuN2S2 unit. The spin density contributions for different geometries calculated from experimental parameters are compared with the electronic situation in the frontier orbital, namely in the semi‐occupied molecular orbital (SOMO) of the copper complex, derived from quantum chemical calculations on different levels (EHT and DFT). One of the hosts, [NiII(tBu2bpy)(mnt)], is characterized by X‐ray structure analysis to prove the coordination geometry. The complex crystallizes in a square‐planar coordination mode in the monoclinic space group P21/a with Z = 4 and the unit cell parameters a = 10.4508(10) Å, b = 18.266(2) Å, c = 12.6566(12) Å, β = 112.095(7)°. Oxidation and reductions potentials of one of the host complexes, [Ni(tBu2bpy)(mnt)], were obtained by cyclovoltammetric measurements.  相似文献   

12.
Reaction of [Pt(DMSO)2Cl2] or [Pd(MeCN)2Cl2] with the electron-rich LH=N,N’-bis(4-dimethylaminophenyl)ethanimidamide yielded mononuclear [PtL2] ( 1 ) but dinuclear [Pd2L4] ( 2 ), a paddle-wheel complex. The neutral compounds were characterized through experiments (crystal structures, electrochemistry, UV-vis-NIR spectroscopy, magnetic resonance) and TD-DFT calculations as metal(II) species with noninnocent ligands L. The reversibly accessible cations [PtL2]+ and [Pd2L4]+ were also studied, the latter as [Pd2L4][B{3,5-(CF3)2C6H3}4] single crystals. Experimental and computational investigations were directed at the elucidation of the electronic structures, establishing the correct oxidation states within the alternatives [PtII(L)2] or [Pt.(L )2], [PtII(L0.5−)2]+ or [PtIII(L)2]+, [(PdII)2(μ-L)4] or [(Pd1.5)2(μ-L0.75−)4], and [(Pd2.5)2(μ-L)4]+ or [(PdII)2(μ-L0.75−)4]+. In each case, the first alternative was shown to be most appropriate. Remarkable results include the preference of platinum for mononuclear planar [PtL2] with an N-Pt-N bite angle of 62.8(2)° in contrast to [Pd2L4], and the dimetal (Pd24+→Pd25+) instead of ligand (L→L ) oxidation of the dinuclear palladium compound.  相似文献   

13.
A novel La( III )‐Cu( II ) heterometallic coordination polymer {[LaCu2(NTA)2(4,4′‐bpy)(H2O)3]NO3·5H2O]n, where H3NTA denotes nitrilotriacetic acid and 4,4′‐bpy denotes 4, 4‐bipyridine, was synthesized and characterized by IR spectrum, elemental analysis and X‐ray diffraction. The complex crystallizes in the triclinic space group Pi with cell parameters a = 1.33710(10) nm, b = 1,44530(10) nm, c =1.0949(2) nm, α = 71.905(7)°, β = 74.327(7)°, γ = 64.427(9)°, V = 1.7912(4) nm3and Z = 2. It consists of heterometallic units, in which each La( II ) ion is coordinated in a distorted monocapped square antiprism by three oxygen atoms from water molecules and six carboxyl oxygen atoms from five NTA3? ions, and each Cu( I ) ion is coordinated by one nitrogen atom from 4,4′‐bpy and one nitrogen atom, three oxygen atoms from NTA3?. In the title complex, La( I ) ions and Cu( II ) ions are connected by the heterometallic bridging of NTA3?, constructing a two‐dimensional network structure along the [110]. And it is extended into an infinite three‐dimensional network structure by the formation of homometallic bridging of Cu‐4, 4′‐bpy‐Cu, exhibiting a certain inclusion ability.  相似文献   

14.
The C3‐symmetric chiral propylated host‐type ligands (±)‐tris(isonicotinoyl)‐tris(propyl)‐cyclotricatechylene ( L1 ) and (±)‐tris(4‐pyridyl‐4‐benzoxy)‐tris(propyl)‐cyclotricatechylene ( L2 ) self‐assemble with PdII into [Pd6L8]12+ metallo‐cages that resemble a stella octangula. The self‐assembly of the [Pd6( L1 )8]12+ cage is solvent‐dependent; broad NMR resonances and a disordered crystal structure indicate no chiral self‐sorting of the ligand enantiomers in DMSO solution, but sharp NMR resonances occur in MeCN or MeNO2. The [Pd6( L1 )8]12+ cage is observed to be less favourable in the presence of additional ligand, than is its counterpart, where L=(±)‐tris(isonicotinoyl)cyclotriguaiacylene ( L1 a ). The stoichiometry of reactant mixtures and chemical triggers can be used to control formation of mixtures of homoleptic or heteroleptic [Pd6L8]12+ metallo‐cages where L= L1 and L1 a .  相似文献   

15.
The new asymmetrical organic ligand 2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole ( L , C17H13N5O), containing pyridine and imidazole terminal groups, as well as potential oxdiazole coordination sites, was designed and synthesized. The coordination chemistry of L with soft AgI, CuI and CdII metal ions was investigated and three new coordination polymers (CPs), namely, catena‐poly[[silver(I)‐μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole] hexafluoridophosphate], {[Ag( L )]PF6}n, catena‐poly[[copper(I)‐di‐μ‐iodido‐copper(I)‐bis(μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole)] 1,4‐dioxane monosolvate], {[Cu2I2( L )2]·C4H8O2}n, and catena‐poly[[[dinitratocopper(II)]‐bis(μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole)]–methanol–water (1/1/0.65)], {[Cd( L )2(NO3)2]·2CH4O·0.65H2O}n, were obtained. The experimental results show that ligand L coordinates easily with linear AgI, tetrahedral CuI and octahedral CdII metal atoms to form one‐dimensional polymeric structures. The intermediate oxadiazole ring does not participate in the coordination interactions with the metal ions. In all three CPs, weak π–π interactions between the nearly coplanar pyridine, oxadiazole and benzene rings play an important role in the packing of the polymeric chains.  相似文献   

16.
The title compound, {[Cu(NH3)4][Cu(CN)3]2}n, features a CuI–CuII mixed‐valence CuCN framework based on {[Cu2(CN)3]}n anionic layers and [Cu(NH3)4]2+ cations. The asymmetric unit contains two different CuI ions and one CuII ion which lies on a centre of inversion. Each CuI ion is coordinated to three cyanide ligands with a distorted trigonal–planar geometry, while the CuII ion is ligated by four ammine ligands, with a distorted square‐planar coordination geometry. The interlinkage between CuI ions and cyanide bridges produces a honeycomb‐like {[Cu2(CN)3]}n anionic layer containing 18‐membered planar [Cu(CN)]6 metallocycles. A [Cu(NH3)4]2+ cation fills each metallocyclic cavity within pairs of exactly superimposed {[Cu2(CN)3]}n anionic layers, but there are no cations between the layers of adjacent pairs, which are offset. Pairs of N—H...N hydrogen‐bonding interactions link the N—H groups of the ammine ligands to the N atoms of cyanide ligands.  相似文献   

17.
Thiosemicarbazides and their metal complexes have attracted considerable interest because of their biological activities and their flexibility, which allows the ligands to bend and rotate freely to accommodate the coordination geometries of various metal centres. Discrete copper(II) and cadmium(II) complexes have been prepared by crystallization of N‐[2‐(2‐hydroxybenzoyl)hydrazinecarbonothioyl]propanamide (H3L) with Cu(CH3COO)2 or Cd(NO3)2 in a dimethylformamide/methanol mixed‐solvent system at room temperature, affording the complexes di‐μ‐acetato‐bis{μ4‐1‐[(2‐oxidophenyl)carbonyl]‐2‐(propanamidomethanethioyl)hydrazine‐1,2‐diido}tetracopper(II) dimethylformamide disolvate, [Cu4(C11H10N3O3S)2(C2H3O2)2]·2C3H7NO, (I), and bis{μ2‐[(2‐hydroxyphenyl)formamido](propanamidomethanethioyl)azanido}bis[(4,4′‐bipyridine)nitratocadmium(II)] dihydrate, [Cd2(C11H12N3O3S)2(NO3)2(C10H8N2)2]·2H2O, (II). Complex (I) consists of four CuII cations, two μ4‐bridging trianionic ligands and two μ2‐bridging acetate ligands, while complex (II) is composed of two CdII cations, two μ2‐bridging monoanionic ligands, two nitrate ligands and two 4,4′‐bipyridine ligands. These discrete complexes are connected by hydrogen bonds and van der Waals interactions to form a three‐dimensional supramolecular architecture. Compared with (I), the phenolic hydroxy group and hydrazide N atom of the thiosemicarbazide ligand of (II) are not involved in coordination and lead to a binuclear CdII complex. This different coordination mode may be attributed to the larger ionic radius of the CdII ion compared with the CuII ion.  相似文献   

18.
A mononuclear complex [Cu(HL · S)2(NO3)2] ( 1 ) and a one‐ dimensional coordination polymer [Cu(HL · S)Cl2]n ( 2 ) [HL · S = 4‐(pyridin‐2‐ylmethyl)tetrahydro‐2H‐thiopyran‐4‐ol] showcase the structure‐directing role of the counterions in their formation reaction: monodentate ligation of NO3 and Cl induces an octahedral (with two HL · S per Cu in 1 ) or trigonal‐bipyramidal (with one HL · S per Cu in 2 ) CuII coordination environment. In contrast to 1 exhibiting no coordinative metal–sulfur bonds in the crystal lattice (space group P21/c), 2 (P21/c) features intermolecular Cu–S contacts of 2.3188(7) Å. The coordination compounds are thermally stable up to ca. 160 °C. Whereas 1 demonstrates the spin‐like behavior of an isolated central CuII ion, compound 2 exhibits weak antiferromagnetic intra‐chain coupling with J ≈ –2.1 cm–1 between neighboring CuII ions.  相似文献   

19.
5‐[(Imidazol‐1‐yl)methyl]benzene‐1,3‐dicarboxylic acid (H2L) was synthesized and the dimethylformamide‐ and dimethylacetamide‐solvated structures of its adducts with CuII, namely catena‐poly[[copper(II)‐bis[μ‐3‐carboxy‐5‐[(imidazol‐1‐yl)methyl]benzoato]] dimethylformamide disolvate], {[Cu(C12H9N2O4)2]·2C3H7NO}n, (I), and catena‐poly[[copper(II)‐bis[μ‐3‐carboxy‐5‐[(imidazol‐1‐yl)methyl]benzoato]] dimethylacetamide disolvate], {[Cu(C12H9N2O4)2]·2C4H9NO}n, (II), the formation of which are associated with mono‐deprotonation of H2L. The two structures are isomorphous and isometric. They consist of one‐dimensional coordination polymers of the organic ligand with CuII in a 2:1 ratio, [Cu(μ‐HL)2]n, crystallizing as the dimethylformamide (DMF) or dimethylacetamide (DMA) disolvates. The CuII cations are characterized by a coordination number of six, being located on centres of crystallographic inversion. In the polymeric chains, each CuII cation is linked to four neighbouring HL ligands, and the organic ligand is coordinated via Cu—O and Cu—N bonds to two CuII cations. In the corresponding crystal structures of (I) and (II), the coordination chains, aligned parallel to the c axis, are further interlinked by strong hydrogen bonds between the noncoordinated carboxy groups in one array and the coordinated carboxylate groups of neighbouring chains. Molecules of DMF and DMA (disordered) are accommodated at the interface between adjacent polymeric assemblies. This report provides the first structural evidence for the formation of coordination polymers with H2Lvia multiple metal–ligand bonds through both carboxylate and imidazole groups.  相似文献   

20.
Three coordination compounds [Mn3(dmb)6(H2O)4(4, 4′‐bpy)3(EtOH)]n ( 1 ) and [M(dmb)2(pyz)2 (H2O)2] [MII = Co ( 2 ), Mn ( 3 )] (Hdmb = 2, 6‐dimethoxybenzoic acid, 4, 4′‐bpy = 4, 4′‐bipyridine, pyz = pyrazine) were synthesized and characterized by single‐crystal X‐ray diffraction analysis. Compound 1 consists of infinite 1D polymeric chains, in which the metal entities are bridged by 4, 4′‐bpy ligands. There are four crystallographically independent MnII atoms in the linear chain with different coordination modes, which is only scarcely reported for linear polymers. The isostructural crystals of 2 and 3 are composed of neutral mononuclear complexes. In crystal the complexes are combined into chains by intermolecular O–H ··· N hydrogen bonds and π–π interactions between antiparallel pyrazine molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号