首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work examines in detail the coupling mechanism between a stationary, homogeneous and isotropic turbulent (HIT) flow and particles, including the effect of particle-particle collisions. In order to illustrate how the physics can be elucidated of four-way interactions, a series of coupled Direct Numerical Simulations (DNS) of forced HIT are performed on a 1283 periodic box at two Taylor Reynolds numbers, 35.4 and 58.0, with interacting particles of different global Stokes numbers and volume fractions. The results show that fluid dissipation decreases up to 32% with increasing global Stokes numbers and particle volume fractions. Moreover, the corresponding dissipation when ignoring particle-particle collisions is over-estimated by up to 7% compared to the fully coupled simulations. A spectral analysis of the coupling mechanism reveals that the particles transfer energy from the large to the small scales, thereby explaining the difference in dissipation. Finally, a model spectrum for the coupling between the turbulent fluid and the particles is proposed.  相似文献   

2.
The mechanism of the response motion of a suspended particle to turbulent motion of its surrounding fluid is different according to size of turbulent eddies. The particle is dragged by the viscous force of large eddies, and meanwhile driven randomly by small eddies. Based on this understanding, the dispersion of a particle with finite size in a homogeneous isotropic turbulence is calculated in this study. Results show that there are two competing effects: when enhanced by the inertia of a particle, the long-term particle diffusivity is reduced by the finite size of the particle.  相似文献   

3.
Direct numerical simulations were conducted to investigate the behavior of heavy particles in homogeneous isotropic turbulence. The present study focused on the effect of particle inertia and drift on the autocorrelations of the particle velocity and the fluid seen by particles and the dispersion characteristics of particles. The Lagrangian integral time scale of particles monotonically increased as the magnitude of the particle response time increased, while that of the fluid seen by particles remained relatively constant; it reached a maximum when the particle response time was close to the Kolmolgorov time scale of the flow. Particle dispersion increased as the particle inertia increased for small particles, while for larger particles, it decreased as particle inertia increased; particle eddy diffusion coefficient was maximal, and greater than that of the fluid by about 30%, at the preferential concentration. The concentration field of the particles with τp/τk≈1.0 showed that particles tend to collect in regions of low vorticity (high strain) due to preferential concentration. As the drift velocity of a particle is increased it crosses the paths of fluid elements more rapidly and will tend to lose correlation with its previous velocity faster than a fluid element will. And the correlation of particle velocities along the drift direction is more persistent than that perpendicular to the direction of drift. Simulations also showed that the continuity effect and the crossing-trajectory effect are weakened for particles with infinite inertia.  相似文献   

4.
Summary Homogeneous and isotropic turbulence has been discussed in the present paper. An attempt has been made to find the simplifying hypothesis for connecting the higher order correlation tensor with the lower ones. Starting from the Navier-Stokes equations of motion for an incompressible fluid and following the usual method of taking the averages, a differential equation in Q and X, the defining scalar of the second order correlation tensor Q x and the defining scalar of a third order isotropic tensor X ijk , has been derived. The tensor X ijk stands for a tensorial expression containing the derivatives of the third and the fourth order tensors. Then the hypothesis is used that X=F(Q), where F is an unknown function. To find the forms of F, Kolmogoroff's similarity principles have been used, and thus two forms for F(Q) corresponding to two regions of the validity of these principles have been deduced.  相似文献   

5.
颗粒湍流和颗粒碰撞的相互作用规律是两相流动中的核心问题。用颗粒湍流模型和颗粒碰撞的动力论模型叠加的方法在研究两相湍流流动方面取得了一定的成效,但是还有待改进。本文基于颗粒湍流形成大尺度脉动和颗粒间碰撞引起小尺度脉动的概念,从双流体模型出发,建立了两相流动的双尺度kp-pε两相湍流模型。利用该模型对下行床和突扩室内的气固...  相似文献   

6.
We have studied the concentration distribution of microbubbles in forced isotropic turbulence. An initially uniform concentration field is shown to evolve to a highlyintermittent orspotty concentration distribution at long time due to the interactions of microbubbles with small-scale, intense, and coherent flow vortical structures. The maximum bubble concentration can be as large as 3,000 times the mean concentration and the local accumulations occur preferentially in the regions of high flow vorticity and low flow pressure. A quantitative measure of global nonuniformity in the concentration field is used to confirm that the preferential accumulation does follow Kolmogorov scaling, as opposed to the large-scale scaling commonly used for dispersion quantification.  相似文献   

7.
8.
The present work studies the isotropic and homogeneous turbulence for incompressible fluids through a specific Lyapunov analysis. The analysis consists in the calculation of the velocity fluctuation through the Lyapunov theory applied to the local deformation using the Navier-Stokes equations, and in the study of the mechanism of energy cascade through the finite scale Lyapunov analysis of the relative motion between two particles. The analysis provides an explanation for the mechanism of energy cascade, leads to the closure of the von Kármán-Howarth equation, and describes the statistics of the velocity difference. Several tests and numerical results are presented.  相似文献   

9.
10.
HOMTY, a code for Large Eddy Simulation of homogeneous isotropic turbulence is proven by successful simulation of two experiments. The role of each term in the equations of motion and the concept of filtering is examined. It is shown that ‘prefiltering’ is unnecessary, and the resulting additional term in the equations, instead of transferring energy to the subgrid scales, backscatters energy from the resolved large wavenumerbers to the small ones. The kinetic energy decay exponent is shown to depend on the low wavenumber part of the velocity spectrum. Pressure statistics are computed and found to be in agreement with previous computations.  相似文献   

11.
12.
Creating homogeneous and isotropic turbulence without a mean flow   总被引:5,自引:0,他引:5  
A novel method of creating homogeneous and isotropic turbulence with small mean flow has been developed. Eight synthetic jet actuators on the corners of a cubic chamber can create energetic turbulence with root-mean-square (rms) velocities as large as 0.87 m/s, corresponding to a Taylor microscale Reynolds number, Re , of 218. Stationary turbulence results show that the turbulence was isotropic, with the rms velocity ratio equal to 1.03, and also homogeneous within the region of interest. Natural decaying turbulence measurements confirmed the power-law decay of the turbulent kinetic energy, with the decay exponent n equal to 1.86 for an initial Re of 224.  相似文献   

13.
14.
Pseudospectral simulations of homogeneous turbulence provide an important class of benchmark flow problems used for fundamental studies of turbulence and for numerical validation purposes. Depending on the numerical resolution, fully resolved computations of homogeneous turbulence can consume large amounts of central processing unit (CPU) time. Here, we present an approach analogous to adaptive mesh refinement for computations performed in physical space to adaptively refine the spectral resolution for pseudospectral computations of isotropic homogeneous turbulent flows. The method is applied to simulations of two-dimensional and three-dimensional isotropic homogeneous turbulence, and the results are compared with direct numerical simulations (DNS) performed using a fixed fine mesh. Significant savings in computational time are found in each case, with little to no compromise in the accuracy of the solutions.  相似文献   

15.
The state of fibres suspended in a turbulent fluid is described in terms of a probability distribution function of fibre orientation and position throughout the suspending fluid. The evolution of the fibre's probability distribution function is governed by a convection–dispersion equation, where the randomizing effect of the turbulence is modelled by rotational and translational dispersion coefficients. To estimate these coefficients a numerical simulation of fibres moving in a turbulent fluid was developed. The trajectory of an ensemble of inertialess, rigid, thin, free-draining fibres was calculated through a stochastic model of homogeneous, isotropic turbulence. The results of the simulation were compared with analytical estimates and were found to provide reasonable agreement over a wide range of fibre length. However, the simulation showed that the Lagrangian integral time scale for rotation was significantly smaller than for translation and the ratio of rotational to translational Lagrangian time scales was smaller than the ratio of Eulerian time scales. The simulation also showed that the Lagrangian velocity correlation increased as fibre length increased and that the temporal correlations approached the analytical estimates of the Eulerian correlations in the limit of long fibres.  相似文献   

16.
17.
In this work, we calculate the self-similar longitudinal velocity correlation function and the statistics of the velocity difference, using the results of the Lyapunov analysis of the fully developed isotropic homogeneous turbulence just presented by the author in a previous work (de Divitiis, Theor Comput Fluid Dyn, doi:10.1007/s00162-010-0211-9). There, a closure of the von Kármán-Howarth equation is proposed and the statistics of velocity difference is determined through a specific statistical analysis of the Fourier-transformed Navier-Stokes equations. The longitudinal correlation functions correspond to steady-state solutions of the von Kármán-Howarth equation under the self-similarity hypothesis introduced by von Kármán. These solutions and the corresponding statistics of the velocity difference are numerically determined for different Taylor-scale Reynolds numbers. The obtained results adequately describe the several properties of the fully developed isotropic turbulence.  相似文献   

18.
In order to accurately assess measurement resolution and measurement uncertainty in DPIV and TPIV measurements, a series of simulations were conducted based on the flow field from a homogeneous isotropic turbulence data set (Re λ = 141). The effect of noise and spatial resolution was quantified by examining the local and global errors in the velocity, vorticity and dissipation fields in addition to other properties of interest such as the flow divergence, topological invariants and energy spectra. In order to accurately capture the instantaneous gradient fields and calculate sensitive quantities such as the dissipation rate, a minimum resolution of x/η = 3 is required, with smoothing recommended for the TPIV results to control the inherently higher noise levels. Comparing these results with experimental data showed that while the attenuation of velocity and gradient quantities was predicted well, higher noise levels in the experimental data led increased divergence.  相似文献   

19.
20.
The attractive fixed-point solution of a nonlinear cascade model is studied for the homogeneous isotropic turbulence containing a parameter C, introduced by Desnyansky and Novikov. With a traditional constant positive external force added on the first shell equation, it can be found that the attractive fixed-point solution of the model depends on both the parameter C and the external force. Thus, an explicit force is introduced to remove the effects of the external force on the attractive fixed-point solution. Furthermore, two groups of attractive fixed-point solutions are derived theoretically and studied numerically. One of the groups has the same scaling behavior of the velocity in the whole inertial range and agrees well with those observed by Bell and Nelkin for the nonnegative parameters. The other is found to have different scaling behaviors of the velocity at the odd and even number shells for the negative parameters. This special characteristic may be used to study the anomalous scaling behavior of the turbulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号