首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Porous nitrogen‐doped carbon nanotubes (PNCNTs) with a high specific surface area (1765 m2 g?1) and a large pore volume (1.28 cm3 g?1) have been synthesized from a tubular polypyrrole (T‐PPY). The inner diameter and wall thickness of the PNCNTs are about 55 nm and 22 nm, respectively. This material shows extremely promising properties for both supercapacitors and for encapsulating sulfur as a superior cathode material for high‐performance lithium–sulfur (Li‐S) batteries. At a current density of 0.5 A g?1, PNCNT presents a high specific capacitance of 210 F g?1, as well as excellent cycling stability at a current density of 2 A g?1. When the S/PNCNT composite was tested as the cathode material for Li‐S batteries, the initial discharge capacity was 1341 mAh g?1 at a current rate of 1 C and, even after 50 cycles at the same rate, the high reversible capacity was retained at 933 mAh g?1. The promising electrochemical energy‐storage performance of the PNCNTs can be attributed to their excellent conductivity, large surface area, nitrogen doping, and unique pore‐size distribution.  相似文献   

2.
A hierarchical hollow hybrid composite, namely, MnO2 nanosheets grown on nitrogen‐doped hollow carbon shells (NHCSs@MnO2), was synthesized by a facile in situ growth process followed by calcination. The composite has a high surface area (251 m2g?1) and mesopores (4.5 nm in diameter), which can efficiently facilitate transport during electrochemical cycling. Owing to the synergistic effect of NHCSs and MnO2, the composite shows a high specific capacitance of 306 F g?1, good rate capability, and an excellent cycling stability of 95.2 % after 5000 cycles at a high current density of 8 A g?1. More importantly, an asymmetric supercapacitor (ASC) assembled by using NHCSs@MnO2 and activated carbon as the positive and negative electrodes exhibits high specific capacitance (105.5 F g?1 at 0.5 A g?1 and 78.5 F g?1 at 10 A g?1) with excellent rate capability, achieves a maximum energy density of 43.9 Wh kg?1 at a power density of 408 W kg?1, and has high stability, whereby the ASC retains 81.4 % of its initial capacitance at a current density of 5 A g?1 after 4000 cycles. Therefore, the NHCSs@MnO2 electrode material is a promising candidate for future energy‐storage systems.  相似文献   

3.
基于碳纳米管的超级电容器研究进展   总被引:1,自引:1,他引:1  
综述了基于碳纳米管及其复合材料作超级电容器的电极材料的研究现状,通过对碳纳米管的改性或与其它材料复合,能有效地提高电容器的电容特性。总结了近几年来在开发超级电容器电极材料领域中对碳纳米管的活化和提高碳纳米管的分散性技术、碳纳米管与过渡金属氧化物复合材料、碳纳米管与导电聚合物复合材料以及碳纳米管与石墨烯复合材料研究的进展。  相似文献   

4.
Low‐cost, single‐step synthesis of hollow nanotubes of N‐doped carbon deposited on CoS is enabled by the simultaneous use of three functionalities of polyacrylonitrite (PAN) nanofibers: 1) a substrate for loading active materials, 2) a sacrificial template for creating hollow tubular structures, and 3) a precursor for in situ nitrogen doping. The N‐doped carbon in hollow tubes of CoS provides a high‐capacity anode of long cycle life for a rechargeable Li‐ion or Na‐ion battery cell that undergoes the conversion reaction 2 A++2 e?+CoS →Co+A2S with A=Li or Na.  相似文献   

5.
A nitrogen‐doped porous carbon monolith was synthesized as a pseudo‐capacitive electrode for use in alkaline supercapacitors. Ammonia‐assisted carbonization was used to dope the surface with nitrogen heteroatoms in a way that replaced carbon atoms but kept the oxygen content constant. Ammonia treatment expanded the micropore size‐distributions and increased the specific surface area from 383 m2 g?1 to 679 m2 g?1. The nitrogen‐containing porous carbon material showed a higher capacitance (246 F g?1) in comparison with the nitrogen‐free one (186 F g?1). Ex situ electrochemical spectroscopy was used to investigate the evolution of the nitrogen‐containing functional groups on the surface of the N‐doped carbon electrodes in a three‐electrode cell. In addition, first‐principles calculations were explored regarding the electronic structures of different nitrogen groups to determine their relative redox potentials. We proposed possible redox reaction pathways based on the calculated redox affinity of different groups and surface analysis, which involved the reversible attachment/detachment of hydroxy groups between pyridone and pyridine. The oxidation of nitrogen atoms in pyridine was also suggested as a possible reaction pathway.  相似文献   

6.
High‐performance electrical double‐layer capacitors (EDLCs) require carbon electrode materials with high specific surface area, short ion‐diffusion pathways, and outstanding electrical conductivity. Herein, a general approach combing the molten‐salt method and chemical activation to prepare N‐doped carbon nanosheets with high surface area (654 m2 g?1) and adjustable porous structure is presented. Owing to their structural features, the N‐doped carbon nanosheets exhibited superior capacitive performance, demonstrated by a maximum capacitance of 243 F g?1 (area‐normalized capacitance up to 37 μF cm?2) at a current density of 0.5 A g?1 in aqueous electrolyte, high rate capability (179 F g?1 at 20 A g?1), and excellent cycle stability. This method provides a new route to prepare porous and heteroatom‐doped carbon nanosheets for high‐performance EDLCs, which could also be extended to other polymer precursors and even waste biomass.  相似文献   

7.
This research presents a simple and efficient method to synthesize porous nitrogen‐doped carbon microspheres (PNCM) by the carbonization of microporous poly(terephthalaldehyde‐pyrrole) organic frameworks (PtpOF). The common KOH activation process is used to tune the porous texture of the PNCM and produce an activated‐PNCM (A‐PNCM). The PNCM and A‐PNCM with specific surface area of 921 and 1303 m2 g?1, respectively, are demonstrated as promising candidates for EDLCs. At a current density of 0.5 A g?1, the specific capacitances of the PNCM and A‐PNCM are 248 and 282 F g?1, respectively. At the relatively high current density of 20 A g?1, the capacitance remaining is 95 and 154 F g?1, respectively. Capacity retention of the A‐PNCM is more than 92 % after 10 000 charge/discharge cycles at a current density of 2 A g?1.  相似文献   

8.
Porous NiO nanosheets are successfully grown on nickel foam substrate through an in situ anodization by using molten KOH as the electrolyte. High‐purity NiO is directly obtained by this one‐step method without any subsequent treatment. The obtained NiO supported on nickel foam is used as a binder‐free electrode for a supercapacitor and its pseudocapacitive behavior has been investigated by cyclic voltammetry and galvanostatic charge–discharge tests in a 6 M aqueous solution of KOH. Electrochemical data demonstrates that this binder‐free electrode possesses ultrahigh capacitance (4.74 F cm?2 at 4 mA cm?2), excellent rate capability, and cycling stability. After 1000 cycles, the areal capacitance value is 9.4 % lower than the initial value and maintains 85.4 % of the maximum capacitance value.  相似文献   

9.
10.
A high amount of heteroatom doping in carbon, although favorable for enhanced density of catalytically active sites, may lead to substantially decreased electroconductivity, which is necessary for the electrochemical oxygen reduction reaction. Herein, a relatively low amount of nitrogen was successfully doped into carbon nanotubes (CNTs) by a hydrothermal approach in one step, and the synthesized nitrogen‐doped CNT (CNT‐N) materials retained most of the original, excellent characteristics, such as the graphitic structure, tubular morphology, and high surface area, of CNTs. The resultant CNT‐N materials, although containing a relatively low amount of nitrogen doping, exhibited high electrocatalytic ORR activity, comparable to that of 20 wt % Pt/C; long durability; and, more importantly, largely inhibited methanol crossover effect.  相似文献   

11.
A 3D CNT/few layered graphene construct (CNT−FLG) with mesopore structure was fabricated and applied in supercapacitors. The structure was acquired through a two-step method. Firstly, commercial multiwalled carbon nanotubes (MCNTs) were oxidized in a mixed solution of concentrated acid and modified with a couple of long-chain organic ions. Second, the above resultant product was carbonized at a high temperature. The achieved structure offers a 3D interconnected electrically conductive network as well as mesopore structure. It also significantly improves the specific surface area of MCNTs. Result of BET tests showed that the specific surface area of CNT−FLG reached to 2235 m2/g. When acted as electrode materials in a supercapacitor structure, specific capacitance was approximately 531.2 F/g at a current density of 0.8 A/g. At current density of 50 A/g, specific capacitance remained 204.4 F/g. Besides, the capacitance retention was as high as 96.18 % after 10000 cycles at the current density of 5 A/g.  相似文献   

12.
It is highly desirable to design advanced heteroatomic doped porous carbon for wide application. Herein, N-doped porous carbon (NPC) was developed via the fabrication of high nitrogen cross-linked triazine polymers followed by pyrolysis and activation with controllable porous structure. The as-synthesized NPC at the pyrolysis temperature of 700 °C possessed rich nitrogen content (up to 11.51 %) and high specific surface area (1353 m2 g−1), which led to a high CO2 adsorption capability at 5.67 mmol g−1 at 298.15 K and 5 bar pressure and excellent stability. When the activation temperature was at 600 °C, such NPC exhibited a superior electrochemical performance as anode for supercapacitors with a specific capacitance of 158.8 and 113 F g−1 in 6 M KOH at a current density of 1 and 10 A g−1, respectively. Notably, it delivered an excellent stability with capacity retention of 97.4 % at 20 A g−1after 6000 cycles.  相似文献   

13.
Limited by the relatively sluggish charge‐carrier separation in semiconductors, the photocatalytic performance is still far below what is expected. Herein, a model of ZnIn2S4 (ZIS) nanosheets with oxygen doping is put forward to obtain in‐depth understanding of the role that doping atoms play in photocatalysis. It shows enhanced photocatalytic activity compared with pristine ZIS. The electron dynamics analyzed by ultrafast transient absorption spectroscopy reveals that the average recovery lifetime of photoexcited electrons is increased by 1.53 times upon oxygen incorporation into the ZIS crystals, indicating enhanced separation of photoexcited carriers in oxygen‐doped ZIS nanosheets. As expected, the oxygen‐doped ZIS nanosheets show a remarkably improved photocatalytic activity with a hydrogen evolution rate of up to 2120 μmol h?1 g?1 under visible‐light irradiation, which is 4.5 times higher than that of the pristine ZIS nanosheets.  相似文献   

14.
Three‐dimensional, vertically aligned MnO/nitrogen‐doped graphene (3D MnO/N‐Gr) walls were prepared through facile solution‐phase synthesis followed by thermal treatment. Polyvinylpyrrolidone (PVP) was strategically added to generate cross‐links to simultaneously form 3D wall structures and to incorporate nitrogen atoms into the graphene network. The unique wall features of the as‐prepared 3D MnO/N‐Gr hybirdes provide a large surface area (91.516 m2 g?1) and allow for rapid diffusion of the ion electrolyte, resulting in a high specific capacitance of 378 F g?1 at 0.25 A g?1 and an excellent charge/discharge stability (93.7 % capacity retention after 8000 cycles) in aqueous 1 m Na2SO4 solution as electrolyte. Moreover, the symmetric supercapacitors that were rationally designed by using 3D MnO/N‐Gr hybrids exhibit outstanding electrochemical performance in an organic electrolyte with an energy density of 90.6 Wh kg?1 and a power density of 437.5 W kg?1.  相似文献   

15.
Here, carbon nanotube@N‐doped mesoporous carbon (CNT@N‐PC) composites were synthesized by using resorcinol‐formaldehyde resin as carbon source, ionic liquids (ILs) as template, and nitrogen sources and tetraethyl orthosilicate (TEOS) as assistant agent. The use of ILs‐modified CNT with nitrogen and TEOS facilitated the generation of a richer mesoporous structure. The obtained CNT@N‐PC was composed of a CNT core and mesoporous carbon particles around it. CNT@N‐PC showed a 3D network structure like “dewy cobwebs” and had a high surface area of 857 m2 g?1, uniform pore size distribution (3.0 nm), and suitable N content (4.9 at.%). When used as supercapacitor electrode, the CNT@N‐PC exhibited a high specific capacitance (244 F g?1 at 1 A g?1), good rate capability and favorable capacitance retention (92.5 % capacitive retention after 5000 cycles), demonstrating the potential for application in high‐performance supercapacitors.  相似文献   

16.
Phosphorus‐doped hexagonal tubular carbon nitride (P‐TCN) with the layered stacking structure was obtained from a hexagonal rod‐like single crystal supramolecular precursor (monoclinic, C2/m). The production process of P‐TCN involves two steps: 1) the precursor was prepared by self‐assembly of melamine with cyanuric acid from in situ hydrolysis of melamine under phosphorous acid‐assisted hydrothermal conditions; 2) the pyrolysis was initiated at the center of precursor under heating, thus giving the hexagonal P‐TCN. The tubular structure favors the enhancement of light scattering and active sites. Meanwhile, the introduction of phosphorus leads to a narrow band gap and increased electric conductivity. Thus, the P‐TCN exhibited a high hydrogen evolution rate of 67 μmol h?1 (0.1 g catalyst, λ >420 nm) in the presence of sacrificial agents, and an apparent quantum efficiency of 5.68 % at 420 nm, which is better than most of bulk g‐C3N4 reported.  相似文献   

17.
A facile microwave method was employed to synthesize NiCo2O4 nanosheets as electrode materials for lithium‐ion batteries and supercapacitors. The structure and morphology of the materials were characterized by X‐ray diffraction, field‐emission scanning electron microscopy, transmission electron microscopy and Brunauer–Emmett–Teller methods. Owing to the porous nanosheet structure, the NiCo2O4 electrodes exhibited a high reversible capacity of 891 mA h g?1 at a current density of 100 mA g?1, good rate capability and stable cycling performance. When used as electrode materials for supercapacitors, NiCo2O4 nanosheets demonstrated a specific capacitance of 400 F g?1 at a current density of 20 A g?1 and superior cycling stability over 5000 cycles. The excellent electrochemical performance could be ascribed to the thin porous structure of the nanosheets, which provides a high specific surface area to increase the electrode–electrolyte contact area and facilitate rapid ion transport.  相似文献   

18.
4‐(4,6‐Diaminopyrimidin‐2‐ylthio) phthalocyaninatocobalt(II) (CoPyPc) was iodine doped, and its electrocatalytic properties explored. Physical characterization techniques such as UV‐vis, X‐ray photoelectron, electron paramagnetic resonance and infra‐red spectroscopy were used. Cyclic voltammetry, electrochemical impedance spectroscopy and rotating disk electrode were used for electrochemical characterization of electrodes modified with the prepared phthalocyanine and its nanocomposites. The electrocatalytic effect of a new iodine‐doped cobalt phthalocyanine derivative supported on multiwalled carbon nanotubes was then investigated towards oxygen reduction reaction. The electrocatalytic activity of the iodine‐doped cobalt phthalocyanine was found to be superior in terms of current over the undoped phthalocyanine nanocomposite.  相似文献   

19.
《化学:亚洲杂志》2017,12(14):1816-1823
Heteroatom‐doped carbon materials have been considered as potential substitutes for Pt‐based electrocatalysts for the oxygen reduction reaction (ORR) in alkaline fuel cells. Here we report the synthesis of oxygen‐containing nitrogen‐doped carbon (ONC) nanosheets through the carbonization of a mixture that contained glucose and dicyandiamide (DCDA). In situ formed graphitic carbon nitride (g‐C3N4) derived from DCDA provided a nitrogen‐rich template, thereby facilitating the formation of ONC nanosheets. The resultant ONC materials with high nitrogen content, high specific surface areas, and highly mesoporous total volume displayed excellent electrochemical performance, including a similar ORR onset potential, half‐potential, a higher diffusion‐limited current, and excellent tolerance to methanol than that of the commercial Pt/C catalyst, respectively. Moreover, the ONC‐850 nanosheet displayed high long‐term durability even after 1000 cycles as well as a high electron transfer number of 3.92 (4.0 for Pt/C). Additionally, this work provides deeper insight into these materials and a versatile strategy for the synthesis of cost‐effective 2D N‐doped carbon electrocatalysts.  相似文献   

20.
Two‐dimensional (2D) carbon nanomaterials possessing promising physical and chemical properties find applications in high‐performance energy storage devices and catalysts. However, large‐scale fabrication of 2D carbon nanostructures is based on a few specific carbon templates or precursors and poses a formidable challenge. Now a new bottom‐up method for carbon nanosheet fabrication using a newly designed anisotropic carbon nanoring molecule, CPPhen, is presented. CPPhen was self‐assembled at a dynamic air–water interface with a vortex motion to afford molecular nanosheets, which were then carbonized under inert gas flow. Their nanosheet morphologies were retained after carbonization, which has never been seen for low‐molecular weight compounds. Furthermore, adding pyridine as a nitrogen dopant in the self‐assembly step successfully afforded nitrogen‐doped carbon nanosheets containing mainly pyridinic nitrogen species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号