首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthetic gels with switchable interfacial properties have great potential in smart devices and controllable transport. Herein, we design an organogel by incorporating a binary liquid mixture with an upper critical solution temperature (UCST) into a polymer network, resulting in reversible modulation of lubrication and adhesion properties. As the temperature changes, the lubricating mechanism changes reversibly from boundary lubrication to hydrodynamic lubrication due to phase separation within the binary solution permeating the gel (friction coefficient 0.4–0.03). Droplets appear on the gel surface at low temperature and disappear with temperature higher than the critical phase separation temperature (Tps) of the organogel. The organogel possesses a relatively low ice adhesive strength (less than 1 kPa). This material has potential applications in anti‐icing and smart devices, and we believe that this design strategy can be expanded to other systems such as aqueous solutions and hydrogels.  相似文献   

2.
The pyroelectricity of AgI crystals strongly affects the icing temperature of super‐cooled water, as disentangled from that of epitaxy. This deduction was achieved by the design of polar crystalline ceramic pellets of AgI, with experimentally determined sense of polarity. These pellets are suitable for measuring both their pyroelectric properties as well as the icing temperature of super‐cooled water, separately on each of the expressed Ag+ and I? hemihedral surfaces. The positive pyroelectric charge at the silver‐enriched side elevates the icing temperature, whereas the negative charge at the iodide side decreases that temperature. Moreover, the effect of pyroelectric charge remains dominant despite the presence of contaminants on both the silver and the iodide‐enriched surfaces. Consequently an electrochemical process for ice nucleation is suggested, which might be of relevance for understanding the role played by electric charges in heterogeneous icing processes in general.  相似文献   

3.
Tough hydrogels, polymeric network structures with excellent mechanical properties (such as high stretchability and toughness), are emerging soft materials. Despite their remarkably mechanical features, tough hydrogels exhibit two flaws (freezing around the icing temperatures of water and drying under arid conditions). Inspired by cryoprotectants (CPAs) used in the inhibition of the icing of water in biological samples, a versatile and straightforward method is reported to fabricate extreme anti‐freezing, non‐drying CPA‐based organohydrogels with long‐term stability by partially displacing water molecules within the pre‐fabricated hydrogels. CPA‐based Ca‐alginate/polyacrylamide (PAAm) tough hydrogels were successfully fabricated with glycerol, glycol, and sorbitol. The CPA‐based organohydrogels remain unfrozen and mechanically flexible even up to −70 °C and are stable under ambient conditions or even vacuum.  相似文献   

4.
Tough hydrogels, polymeric network structures with excellent mechanical properties (such as high stretchability and toughness), are emerging soft materials. Despite their remarkably mechanical features, tough hydrogels exhibit two flaws (freezing around the icing temperatures of water and drying under arid conditions). Inspired by cryoprotectants (CPAs) used in the inhibition of the icing of water in biological samples, a versatile and straightforward method is reported to fabricate extreme anti‐freezing, non‐drying CPA‐based organohydrogels with long‐term stability by partially displacing water molecules within the pre‐fabricated hydrogels. CPA‐based Ca‐alginate/polyacrylamide (PAAm) tough hydrogels were successfully fabricated with glycerol, glycol, and sorbitol. The CPA‐based organohydrogels remain unfrozen and mechanically flexible even up to ?70 °C and are stable under ambient conditions or even vacuum.  相似文献   

5.
A multiscale simulation-based approach is presented for predicting anti-icing properties of nanocomposite coatings. Development of robust anti-icing coatings is a challenging task. An anti-icing coating that can prevent in-flight icing is of particular interest to the aircraft industry. A multiscale simulations based approach is developed to provide insights into the complex effect of coating material and surface topology on the prevention of in-flight icing. Chemical properties of different coatings and kinetics of icing or inhibition of ice nucleation are calculated from nanoscale atomistic simulations. In addition, in-flight icing environments including impingement and rolling of supercooled microdroplet and nucleation of ice under wind shear have been implemented using fluid dynamics methodologies. A model for icing in nano-to-microscale for surfaces with known chemical composition and surface topology is used for developing predictive capabilities regarding anti-icing performance of potential coatings. In this work, fluorinated polyhedral oligomericsilsesquioxanes molecules have been used to increase nanoscale roughness when embedded in a polycarbonate polymeric matrix. The findings suggest that a successful anti-icing coating will require precise control over nanoscale and microscale roughness. The multiscale methodology presented therefore can potentially help in identifying coupled effects of material, surface topology, and icing environment for promising coatings before performing icing tunnel experiments.  相似文献   

6.
Electrofreezing experiments of super‐cooled water (SCW) with different ions, performed directly on the charged hemihedral faces of pyroelectric LiTaO3 and AgI crystals, in the presence and in the absence of pyroelectric charge are reported. It is demonstrated that bicarbonate (HCO3?) ions elevate the icing temperature near the positively charged faces. In contrast, the hydronium (H3O+) slightly reduces the icing temperature. Molecular dynamics simulations suggest that the hydrated trigonal planar HCO3? ions self‐assemble with water molecules near the surface of the AgI crystal as clusters of slightly different configuration from those of the ice‐like hexagons. These clusters, however, have a tendency to serve as embryonic nuclei for ice crystallization. Consequently, we predicted and experimentally confirmed that the trigonal planar ions of NO3? and guanidinium (Gdm+), at appropriate concentrations, elevate the icing temperature near the positive and negative charged surfaces, respectively. On the other hand, the Cl? and SO42? ions of different configurations reduce the icing temperature.  相似文献   

7.
Superhydrophobic surfaces: are they really ice-repellent?   总被引:2,自引:0,他引:2  
This work investigates the anti-ice performance of various superhydrophobic surfaces under different conditions. The adhesion strength of glaze ice (similar to that deposited during "freezing rain") is used as a measure of ice-releasing properties. The results show that the ice-repellent properties of the materials deteriorate during icing/deicing cycles, as surface asperities appear to be gradually damaged. It is also shown that the anti-icing efficiency of superhydrophobic surfaces is significantly lower in a humid atmosphere, as water condensation both on top of and between surface asperities takes place, leading to significantly larger values of ice adhesion strength. This work thus shows that superhydrophobic surfaces are not always ice-repellent and their use as anti-ice materials may therefore be limited.  相似文献   

8.
Silicon‐based composites have been recognized as a promising anode material for high‐energy lithium‐ion batteries (LIBs). However, the intrinsically low conductivity and the huge volume expansion during lithiation/delithiation progresses impede its further practical applications. In the past decades, numerous efforts have been made for surface and interface modification of Si‐based anodes. Among these, doping of active materials with heteroatoms is one promising method to endow silicon many unmatched electrochemical properties. In this review, we focus on the effects of heteroatom doping on the interfacial properties of Si‐based anodes, and some typical strategies for the interface doping are highlighted. We aim to give some reference for interfacial doping of Si‐based anodes in LIBs.  相似文献   

9.
Aluminum is widely used in transmission lines, and the accumulation of ice on aluminum conductor may inflict serious damage such as tower collapse and power failure.In this study, super-hydrophobic surface (SHS) on aluminum conductor with micro-nanostructure was fabricated using the preferential etching principle of crystal defects.The surface microstructure and wettability were investigated by scanning electron microscope and contact angle measurement, respectively.The icing progress was observed with a self-made icing experiment platform at different environment temperature.The results showed that, due to jumping and rolling down of coalesced droplets from SHS of aluminum conductor at low temperature, the formation of icing on SHS could be delayed.Dynamic icing experiment indicated that SHS on aluminum conductor could restrain the formation of icing in certain temperature range, but could not exert influence on the accumulation of icing.This study offers new insight into understanding the anti-icing performance of actual aluminum conductor.  相似文献   

10.
Interfacial charge transfer (CT) is of interest owing to its effect on the performance of molecular photovoltaic (PV) devices. The characteristics and structures of interfacial materials, such as TiO2 nanoparticles (NPs) in some solar cells, are employed to adjust the CT process. In this study, three kinds of interfacial systems, including a solar cell‐like TiO2‐Ag‐ p‐mercaptopyridine (MPY)‐ iron phthalocyanine (FePc) system, are compared to investigate the interfacial CT process using surface‐enhanced Raman scattering (SERS) spectroscopy. The SERS results show the significance of TiO2 NPs in the system on altering the direction and path of the interfacial CT, which is closely associated with the CT enhancement contribution to SERS in such an interfacial system. SERS spectroscopy is expected to be a promising technique for the exploration and estimation of the interfacial CT behavior in PV devices, which may further extend the applications of SERS in the field of solar cells.  相似文献   

11.
Demulsifiers provide an important means of breaking water‐in‐crude oil, which are formed during crude oil exploitation. In present work, twenty polyether copolymers based on polyethyleneimine (PEI) were synthesized. The interfacial properties of the PEI polyethers at the water‐crude oil interface were described by interfacial tension (IFT) and interfacial dilational modulus. The effects of position isomerism, size of intermediate and ratio of ethylene oxide (EO)/propylene oxide (PO) on the demulsification efficiency of these polyethers were studied. The results show that different positions of the EO and PO in copolymers lead to huge difference in both interfacial properties and demulsification performance. Polymers with hydrophilic core and hydrophobic tails (Ex‐mn series) are not efficient on demulsification of water‐in‐oil emulsion whereas polymers with hydrophobic core and hydrophilic tails (Px‐mn series) are. Meanwhile, Px‐mn series show higher IFT and lower interfacial dilational modulus than Ex‐mn series. In the same series, the IFT and interfacial dilational modulus decrease with decreasing EO/PO ratio. In the series with best demulsification performance (P199‐mn series), 60 min water removal rates of the polymers increase with decreasing EO/PO ratio at 65°C. In other words, the longer the hydrophobic blocks of polymers, the stronger the demulsification capacity. The effect of concentration of demulsifier on the demulsification efficiency was also investigated. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
This article reports on the interfacial modifications induced by different amounts of a succinyl‐fluorescein grafted atactic polypropylene (a‐PP‐SF) as a truly interfacial agent in polypropylene/talc composite materials. The a‐PP‐SF used, which contains 4% grafts, was previously obtained in our laboratory by chemical modification of a byproduct from industrial polymerization reactors. Thermal and mechanical analyses of composites, performed under dynamic conditions, led to the correlation of parameters at the microscopic scale with others at the macroscopic scale. Thus, the interfacial effect caused by different amounts of a‐PP‐SF in the composite can be concluded by observations made at either scale. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1371–1382, 2002  相似文献   

13.
The enhancement of photocatalytic activity of TiO2 can be made either by promoting absorption efficiency of photon energy or by reducing recombination losses of photogenerated charge carriers, for which fabrication of nanocomposite structure with carbon materials is an optional selection. Among various nanocarbons, graphene (G), graphene oxide (GO), and reduced graphene oxide (rGO) are more favorable as the counterpart materials because they can provide availability of both obverse and reverse surface, thus doubling effective sites for adsorption, loading of nanoparticles, and interfacial interaction with the loaded nanoparticles. Composition of G/GO with titania, therefore, is a hopeful strategy for achieving synergy or cooperative effect in photocatalysis. In this personal account, we focus on the background and methodology of several soft chemical approaches that we have utilized up to date to fabricate nanocomposites of G/GO and titania, aiming to shed light on the importance of designing of nanocomposite structure for enhancing photocatalysis. In addition, we emphasize the role of interfacial interaction between carbon and titania by exemplifying a hybridized photocatalyst based on inexpensive biomass‐derived carbon sphere (CS), and demonstrate that it is a crucial influential factor underlying an enhanced visible light photocatalysis. CS can be a better selection as a counterpart component than G/GO, whose core‐shell composing structure with titania (TiO2@CS) can efficiently induce charge transfer so as to achieve a much higher photocatalytic performance under visible light illumination as compared to the composite of rGO and titania.  相似文献   

14.
This Communication describes a mechanism to explain antifreeze protein's function to inhibit the growth of ice crystals. We propose that the adsorption of antifreeze protein (AFP) molecules on an ice surface induces a dense AFP-water layer, which can significantly decrease the mole fraction of the interfacial water and, thus, lower the temperature for a seed ice crystal to grow in a super-cooled AFP solution. This mechanism can also explain the nearly unchanged melting point for the ice crystal due to the AFP's ice-surface adsorption. A mathematical model combining the Langmuir theory of adsorption and the colligative effect of thermodynamics has been proposed to find the equilibrium constants of the ice-surface adsorptions, and the interfacial concentrations of AFPs through fitting the theoretical curves to the experimental thermal hysteresis data. This model has been demonstrated by using the experimental data of serial size-mutated beetle Tenebrio molitor (Tm) AFPs. It was found that the AFP's ice-surface adsorptions could increase the interfacial AFP's concentrations by 3 to 4 orders compared with those in the bulk AFP solutions.  相似文献   

15.
Dynamics of ice nucleation on water repellent surfaces   总被引:3,自引:0,他引:3  
Prevention of ice accretion and adhesion on surfaces is relevant to many applications, leading to improved operation safety, increased energy efficiency, and cost reduction. Development of passive nonicing coatings is highly desirable, since current antiicing strategies are energy and cost intensive. Superhydrophobicity has been proposed as a lead passive nonicing strategy, yet the exact mechanism of delayed icing on these surfaces is not clearly understood. In this work, we present an in-depth analysis of ice formation dynamics upon water droplet impact on surfaces with different wettabilities. We experimentally demonstrate that ice nucleation under low-humidity conditions can be delayed through control of surface chemistry and texture. Combining infrared (IR) thermometry and high-speed photography, we observe that the reduction of water-surface contact area on superhydrophobic surfaces plays a dual role in delaying nucleation: first by reducing heat transfer and second by reducing the probability of heterogeneous nucleation at the water-substrate interface. This work also includes an analysis (based on classical nucleation theory) to estimate various homogeneous and heterogeneous nucleation rates in icing situations. The key finding is that ice nucleation delay on superhydrophobic surfaces is more prominent at moderate degrees of supercooling, while closer to the homogeneous nucleation temperature, bulk and air-water interface nucleation effects become equally important. The study presented here offers a comprehensive perspective on the efficacy of textured surfaces for nonicing applications.  相似文献   

16.
为了寻找对白血病细胞系增殖有较高抑制活性的先导化合物,本文以取代苄胺为原料,经Michael加成,Dieckmann缩合,水解脱羧和与Grignard试剂反应合成了12个均未见文献报道的目标化合物6a─6l,结构均经过1H NMR、IR、MS及元素分析确证。并采用MTT法对目标化合物进行了对白血病K562细胞系增殖影响的初步测试,结果表明大部分具有较好的抑制细胞系增殖的活性,有潜在的抗白血病活性。  相似文献   

17.
We show graphene oxide (GO) greatly suppresses the growth and recrystallization of ice crystals, and ice crystals display a hexagonal shape in the GO dispersion. Preferred adsorption of GO on the ice crystal surface in liquid water leads to curved ice crystal surface. Therefore, the growth of ice crystal is suppressed owing to the Gibbs–Thompson effect, that is, the curved surface lowers the freezing temperature. Molecular dynamics simulation analysis reveals that oxidized groups on the basal plane of GO form more hydrogen bonds with ice in comparison with liquid water because of the honeycomb hexagonal scaffold of graphene, giving a molecular‐level mechanism for controlling ice formation. Application of GO for cryopreservation shows that addition of only 0.01 wt % of GO to a culture medium greatly increases the motility (from 24.3 % to 71.3 %) of horse sperms. This work reports the control of growth of ice with GO, and opens a new avenue for the application of 2D materials.  相似文献   

18.
This investigation presents novel thermoplastic elastomers (TPEs) based on poly(styrene‐butadiene‐styrene) (SBS) and ester‐type polyurethane (TPU‐EX) materials were prepared with varying compositions. A series of investigations were conducted on the relationships between mechanical properties, dynamic mechanical properties, anti‐vibration and vibration isolator properties given, and the different compositions. The experimental results show incompatibilities between SBS and TPU‐EX. SBS mechanical properties, dynamic mechanical properties, anti‐vibration and vibration isolator properties are improved with an increase in the amount of TPU‐EX, suggesting that the blending of SBS with TPU‐EX was consistent with the compound rule. Based on the obtained results, the viscoelasticity of SBS materials, their capacity to isolate vibration, and their anti‐vibration performance can be adjusted by controlling the proportion of TPU‐EX. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Herein, we report on a tumor nanovaccine LMNP@CM that enhances the process of antigen‐presenting by stimulating the immune system to uptake tumor antigens actively. The nanovaccine is comprised of polyethylene glycol modified liquid metal nanoparticles (LMNP) and tumor cell membranes (CM) as antigens. Under 808 nm irradiation, the photothermal conversion effect of injected LMNP can cause mild local inflammation, and subsequently induces antigen‐presenting cells active recruitment and facilitates cellular uptake of tumor antigens. Meanwhile, because of the immune adjuvant effect of metal materials, the nanovaccine LMNP@CM promotes the maturation and activation of antigen‐presenting cells and induces anti‐tumor immune response effectively. By priming the host immune recognition of tumor antigens, this nanovaccine displays prophylactic effects and significantly suppresses tumor growth in a mouse breast tumor model. The nanovaccine LMNP@CM represents a novel strategy of utilizing light‐controlled means to actively induce anti‐tumor immune processes, showing advanced therapeutic potentials and robust adaptability for treating multiple tumors by changing the loaded antigens.  相似文献   

20.
The solid‐state three‐dimensional ordering of polyaniline–dopant complexes was investigated with four structurally different sulfonic acid dopants. The doped materials were produced in three different ways: polyaniline emeraldine base doped with sulfonic acid (aqueous route), in situ polymerization at the organic–water solvent interface (interfacial route), and in situ polymerization in organic and aqueous solvent mixtures (bilayer route). p‐Toluenesulfonic acid (PTSA), 5‐sulfosalicilic acid (SSA), camphorsulfonic acid (CSA), and dodecylbenzene sulfonic acid (DBSA) were employed as dopants. The conductivity of the aqueous‐route samples showed 10 and 100 times higher conductivity than the interfacial and bilayer routes, respectively. WXRD studies suggested that the crystallinity of the doped samples was dependent on both the structure of the dopants and the polymerization techniques. DBSA increases the polyaniline interplanar distance and produced highly crystalline materials via the aqueous and bilayer routes but failed with the interfacial route because of poor solubility in water. CSA, PTSA, and SSA produced highly crystalline samples by the interfacial route but failed with the aqueous (except for CSA) and bilayer routes. SEM analysis revealed that the doped materials of the interfacial route had excellent continuous morphology and uniform submicrometer‐size particle distributions in comparison with those of the aqueous and bilayer routes. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1321–1331, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号