首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
One‐dimensional nanowires enable the realization of optical and electronic nanodevices that may find applications in energy conversion and storage systems. Herein, large‐scale aligned DNA nanowires were crafted by flow‐enabled self‐assembly (FESA). The highly oriented and continuous DNA nanowires were then capitalized on either as a template to form metallic nanowires by exposing DNA nanowires that had been preloaded with metal salts to an oxygen plasma or as a scaffold to direct the positioning and alignment of metal nanoparticles and nanorods. The FESA strategy is simple and easy to implement and thus a promising new method for the low‐cost synthesis of large‐scale one‐dimensional nanostructures for nanodevices.  相似文献   

3.
A series of linear doubly discotic triad supermolecules based on a porphyrin (P) core and two triphenylene (Tp) arms linked by amide bonds are synthesized. The samples are denoted as P(Tp)2. Hydrogen bonding along the P stacks is the primary driving force for the supramolecular self‐assembly of P(Tp)2 triad supermolecules. Meanwhile, the degree of coupling between P and Tp disks also plays an important role. For samples with the spacer lengths longer than or similar to the alkyl chain lengths in the Tp arms, P and Tp are decoupled to a large degree. This decoupling result in non‐uniform tilt angles for P and Tp disks along both the a‐ and c‐axes. Therefore, large unit cells are observed with eight P(Tp)2 supermolecules per cell. For a sample with the spacer length much shorter than the alkyl chains in the Tp arms, P and Tp are strongly coupled. Therefore, both P and Tp have uniform tilt angles along the a‐ and c‐axes. A small unit cell is obtained with only one P(Tp)2 supermolecule per cell.  相似文献   

4.
5.
Highly ordered supramolecular microfibers were constructed through a simple ionic self‐assembly strategy from complexes of the N‐tetradecyl‐N‐methylpyrrolidinium bromide (C14MPB) surface‐active ionic liquid and the small methyl orange (MO) dye molecule, with the aid of patent blue VF sodium salt. By using scanning electron microscopy and polarized optical microscopy, the width of these self‐assembled microfibers is observed to be about 1 to 5 μm and their length is from tens of micrometers to almost a millimeter. The 1H NMR spectra of the microfibers indicates that the supramolecular complexes are composed of C14MPB and MO in equal molar ratio. The electrostatic, hydrophobic, and π–π stacking interactions are regarded as the main driving forces for the formation of microfibers. Furthermore, through characterization by using confocal fluorescence microscopy, the microfibers were observed to show strong fluorescent properties and may find potential applications in many fields.  相似文献   

6.
The self‐organization of multicomponent supramolecular systems involving a variety of two‐dimensional (2 D) polygons and three‐dimensional (3 D) cages is presented. Nine self‐organizing systems, SS1 – SS9 , have been studied. Each involves the simultaneous mixing of organoplatinum acceptors and pyridyl donors of varying geometry and their selective self‐assembly into three to four specific 2 D (rectangular, triangular, and rhomboid) and/or 3 D (triangular prism and distorted and nondistorted trigonal bipyramidal) supramolecules. The formation of these discrete structures is characterized using NMR spectroscopy and electrospray ionization mass spectrometry (ESI‐MS). In all cases, the self‐organization process is directed by: 1) the geometric information encoded within the molecular subunits and 2) a thermodynamically driven dynamic self‐correction process. The result is the selective self‐assembly of multiple discrete products from a randomly formed complex. The influence of key experimental variables ‐ temperature and solvent ‐ on the self‐correction process and the fidelity of the resulting self‐organization systems is also described.  相似文献   

7.
8.
9.
The reversibility of boronic acid and diol interaction makes it an ideal candidate for the design of self‐assembled molecular structures. Reversibility is required to ensure that the thermodynamically most stable structure is formed. Reversibility also ensures that any errors produced during the assembly process are not permanent.  相似文献   

10.
Hierarchical self‐assembly of transient composite hydrogels is demonstrated through a two‐step, orthogonal strategy using nanoparticle tectons interconnected through metal–ligand coordination complexes. The resulting materials are highly tunable with moduli and viscosities spanning many orders of magnitude, and show promising self‐healing properties, while maintaining complete optical transparency.

  相似文献   


11.
12.
13.
14.
Owing to their versatility and biocompatibility, peptide‐based self‐assembled structures constitute valuable targets for complex functional designs. It is now shown that artificial capsules based on β‐barrel binding motifs can be obtained by means of dynamic covalent chemistry (DCC) and self‐assembly. Short peptides (up to tetrapeptides) are reversibly attached to resorcinarene scaffolds. Peptidic capsules are thus selectively formed in either a heterochiral or a homochiral way by simultaneous and spontaneous processes, involving chiral sorting, tautomerization, diastereoselective induction of inherent chirality, and chiral self‐assembly. Self‐assembly is shown to direct the regioselectivity of reversible chemical reactions. It is also responsible for shifting the tautomeric equilibrium for one of the homochiral capsules. Two different tautomers (keto‐enamine hemisphere and enol‐imine hemisphere) are observed in this capsule, allowing the structure to adapt for self‐assembly.  相似文献   

15.
A chiral bisurea‐based superhydrogelator that is capable of forming supramolecular hydrogels at concentrations as low as 0.2 mM is reported. This soft material has been characterized by thermal studies, rheology, X‐ray diffraction analysis, transmission electron microscopy (TEM), and by various spectroscopic techniques (electronic and vibrational circular dichroism and by FTIR and Raman spectroscopy). The expression of chirality on the molecular and supramolecular levels has been studied and a clear amplification of its chirality into the achiral analogue has been observed. Furthermore, thermal analysis showed that the hydrogelation of compound 1 has a high response to temperature, which corresponds to an enthalpy‐driven self‐assembly process. These particular thermal characteristics make these materials easy to handle for soft‐application technologies.  相似文献   

16.
17.
Triangular luminescent box : Self‐assembly of a new multidentate receptor with europium cations results in the formation of trinuclear discrete complexes. X‐ray crystallography shows that nine‐coordinate cations are linked by ligands to provide a triangular complex in the solid state and in solution. Despite the coordinated solvent molecules, this topologically unusual complex exhibits remarkable luminescent properties.

  相似文献   


18.
A simple approach to control the self‐assembly of ZnS nanocrystals into well‐defined, uniform, three‐dimensional, micrometer‐scale, solid ellipsoidal structures with rattle‐type, multishelled, and hollow architectures is presented. There is no surfactant or small molecule to assist the self‐assembly of the nanocrystals. A possible mechanism of the controlled self‐assembly is proposed. The growth process can be divided into two stages: 1) the formation of ellipsoidal architectures via oriented aggregation, the growth kinetics of which is primarily attributed to the charge–charge, charge–dipole, and dipole–dipole interactions of preformed ZnS nanocrystals; and 2) Ostwald ripening, which results in multishelled, rattle‐type, and hollow structures. This self‐assembly concept is also applicable to other metal sulfides.  相似文献   

19.
Since the discovery of the liquid‐crystalline state of matter 125 years ago, this field has developed into a scientific area with many facets. This Review presents recent developments in the molecular design and self‐assembly of liquid crystals. The focus is on new exciting soft‐matter structures distinct from the usually observed nematic, smectic, and columnar phases. These new structures have enhanced complexity, including multicompartment and cellular structures, periodic and quasiperiodic arrays of spheres, and new emergent properties, such as ferroelctricity and spontaneous achiral symmetry‐breaking. Comparisons are made with developments in related fields, such as self‐assembled monolayers, multiblock copolymers, and nanoparticle arrays. Measures of structural complexity used herein are the size of the lattice, the number of distinct compartments, the dimensionality, and the logic depth of the resulting supramolecular structures.  相似文献   

20.
In covalent polymerization, a single monomer can result in different polymer structures due to positional, geometric, or stereoisomerism. We demonstrate that strong hydrophobic interactions result in stable noncovalent polymer isomers that are based on the same covalent unit (amphiphilic perylene diimide). These isomers have different structures and electronic/photonic properties, and are stable in water, even upon prolonged heating at 100 °C. Such combination of covalent‐like stability together with structural/functional variation is unique for noncovalent polymers, substantially advancing their potential as functional materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号