首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hybrid organic‐inorganic perovskite solar cells (PSCs) have shown significant potential for use in the energy field. Typically, hole‐transporting materials (HTMs) play an important role in affecting the power conversion efficiency (PCE) of PSCs. A deep understanding of the structure‐property relationship plays a vital role in developing efficient HTMs. Herein, the relationship between the structure and properties of two small organic HTMs H2,5 and H3,4 were systematically investigated in terms of the electronic and optical properties, the hole‐transporting behavior by using density functional theory (DFT) and Marcus electron transfer theory. The results demonstrated that the high power conversion efficiency of the H2,5‐ based PSC was caused by strong interactions with the perovskite material on the interface and an enhanced hole mobility in H2,5 compared with H3,4 . The strong interaction derives from the short bond length of O atom of HTM and Pb atom of perovskite material, and the highly hole mobility derives from the quasi‐planar conjugated conformation and tight packing model of neighboring molecules in H2,5 . In addition, we found that the planar structure enhances the intermolecular interaction between HTM and perovskite materials compared with the ′V′‐shaped molecule. Importantly, we also note that the HOMO level of the isolated molecule is not always proportional to the open‐circuit voltages of PSCs since the HOMO level might move toward a higher level when the interaction between HTM and interface of perovskite was included. The work gives essential information for rational designing efficient HTMs.  相似文献   

2.
Two new hole‐transporting materials (HTMs), BX‐OMeTAD and BTX‐OMeTAD , based on xanthene and thioxanthene units, respectively, and bearing p‐methoxydiphenylamine peripheral groups, are presented for their use in perovskite solar cells (PSCs). The novelty of the newly designed molecules relies on the use of a single carbon‐carbon bond ‘C?C’ as a linker between the two functionalized heterocycles, which increases the flexibility of the molecule compared with the more rigid structure of the widely used HTM spiro‐OMeTAD. The new HTMs display a limited absorbance in the visible region, due to the lack of conjugation between the two molecular halves, and the chemical design used has a remarkably impact on the thermal properties when compared to spiro‐OMeTAD. BX‐OMeTAD and BTX‐OMeTAD have been tested in ([(FAPbI3)0.87(MAPbBr3)0.13]0.92[CsPbI3]0.08)‐based PSC devices exhibiting power conversion efficiencies of 14.19 and 16.55 %, respectively. The efficiencies reached, although lower than those measured for spiro‐OMeTAD (19.63 %), are good enough to consider the chemical strategy used as an interesting via to design HTMs for PSCs.  相似文献   

3.
Two new electron‐rich molecules based on 3,4‐phenylenedioxythiophene (PheDOT) were synthesized and successfully adopted as hole‐transporting materials (HTMs) in perovskite solar cells (PSCs). X‐ray diffraction, absorption spectra, photoluminescence spectra, electrochemical properties, thermal stabilities, hole mobilities, conductivities, and photovoltaic parameters of PSCs based on these two HTMs were compared with each other. By introducing methoxy substituents into the main skeleton, the energy levels of PheDOT‐core HTM were tuned to match with the perovskite, and its hole mobility was also improved (1.33×10?4 cm2 V?1 s?1, being higher than that of spiro‐OMeTAD, 2.34×10?5 cm2 V?1 s?1). The PSC based on MeO‐PheDOT as HTM exhibits a short‐circuit current density (Jsc) of 18.31 mA cm?2, an open‐circuit potential (Voc) of 0.914 V, and a fill factor (FF) of 0.636, yielding an encouraging power conversion efficiency (PCE) of 10.64 % under AM 1.5G illumination. These results give some insight into how the molecular structures of HTMs affect their performances and pave the way for developing high‐efficiency and low‐cost HTMs for PSCs.  相似文献   

4.
Novel steric bulky hole transporting materials (HTMs) with two or four N,N‐di(4‐methoxyphenyl)aminophenyl units have been synthesized. When the EtheneTTPA was used as a hole transporting material in perovskite solar cell, the power conversion efficiency afforded 12.77 % under AM 1.5 G illumination, which is comparable to the widely used spiro‐OMeTAD based solar cell (13.28 %).  相似文献   

5.
A novel hole‐transporting molecule (F101) based on a furan core has been synthesized by means of a short, high‐yielding route. When used as the hole‐transporting material (HTM) in mesoporous methylammonium lead halide perovskite solar cells (PSCs) it produced better device performance than the current state‐of‐the‐art HTM 2,2′,7,7′‐tetrakis‐(N,N‐di‐p‐methoxyphenylamine)‐9,9′‐spirobifluorene (spiro‐OMeTAD). The F101‐HTM‐based device exhibited both slightly higher Jsc (19.63 vs. 18.41 mA cm?2) and Voc (1.1 vs. 1.05 V) resulting in a marginally higher power conversion efficiency (PCE) (13.1 vs. 13 %). The steady‐state and time‐resolved photoluminescence show that F101 has significant charge extraction ability. The simple molecular structure, short synthesis route with high yield and better performance in devices makes F101 an excellent candidate for replacing the expensive spiro‐OMeTAD as HTM in PSCs.  相似文献   

6.
We report a novel electron‐rich molecule based on 3,4‐ethylenedioxythiophene (H101). When used as the hole‐transporting layer in a perovskite‐based solar cell, the power‐conversion efficiency reached 13.8 % under AM 1.5G solar simulation. This result is comparable with that obtained using the well‐known hole transporting material 2,2′,7,7′‐tetrakis(N,N‐di‐p‐methoxyphenylamine)‐9,9′‐spirobifluorene (spiro‐OMeTAD). This is the first heterocycle‐containing material achieving >10 % efficiency in such devices, and has great potential to replace the expensive spiro‐OMeTAD given its much simpler and cheaper synthesis.  相似文献   

7.
The construction of state‐of‐the‐art hole‐transporting materials (HTMs) is challenging regarding the appropriate molecular configuration for simultaneously achieving high morphology uniformity and charge mobility, especially because of the lack of appropriate building blocks. Herein a semi‐locked tetrathienylethene (TTE) serves as a promising building block for HTMs by fine‐tuning molecular planarity. Upon incorporation of four triphenylamine groups, the resulting TTE represents the first hybrid orthogonal and planar conformation, thus leading to the desirable electronic and morphological properties in perovskite solar cells (PSCs). Owing to its high hole mobility, deep lying HOMO level, and excellent thin film quality, the dopant‐free TTE‐based PSCs exhibit a very promising efficiency of over 20 % with long‐term stability, achieving to date the best performances among dopant‐free HTM‐based planar n‐i‐p structured PSCs.  相似文献   

8.
New star‐shaped benzotrithiophene (BTT)‐based hole‐transporting materials (HTM) BTT‐1, BTT‐2 and BTT‐3 have been obtained through a facile synthetic route by crosslinking triarylamine‐based donor groups with a benzotrithiophene (BTT) core. The BTT HTMs were tested on solution‐processed lead trihalide perovskite‐based solar cells. Power conversion efficiencies in the range of 16 % to 18.2 % were achieved under AM 1.5 sun with the three derivatives. These values are comparable to those obtained with today's most commonly used HTM spiro‐OMeTAD, which point them out as promising candidates to be used as readily available and cost‐effective alternatives in perovskite solar cells (PSCs).  相似文献   

9.
Organic p‐type semiconductors with tunable structures offer great opportunities for hybrid perovskite solar cells (PVSCs). We report herein two dithieno[3,2‐b:2′,3′‐d]pyrrole (DTP) cored molecular semiconductors prepared through π‐conjugation extension and an N‐alkylation strategy. The as‐prepared conjugated molecules exhibit a highest occupied molecular orbital (HOMO) level of ?4.82 eV and a hole mobility up to 2.16×10?4 cm2 V?1 s?1. Together with excellent film‐forming and over 99 % photoluminescence quenching efficiency on perovskite, the DTP based semiconductors work efficiently as hole‐transporting materials (HTMs) for n‐i‐p structured PVSCs. Their dopant‐free MA0.7FA0.3PbI2.85Br0.15 devices exhibit a power conversion efficiency over 20 %, representing one of the highest values for un‐doped molecular HTMs based PVSCs. This work demonstrates the great potential of using a DTP core in designing efficient semiconductors for dopant‐free PVSCs.  相似文献   

10.
Efficient hole‐transporting materials (HTMs), TAZ‐[MeOTPA]2 and TAZ‐[MeOTPATh]2 incorporating two electron‐rich diphenylamino side arms, through direct linkage or thiophen bridges, respectively, on the C3‐ and C5‐positions of a 4‐phenyl‐1,2,4‐triazole core were synthesized. These synthetic HTMs with donor–acceptor type molecular structures exhibited effective intramolecular charge transfer for improving the hole‐transporting properties. The structural modification of HTMs by thiophene bridging might increase intermolecular π–π stacking in the solid state and afford a better spectral response because of their increased π‐conjugation length. Perovskite‐based cells using TAZ‐[MeOTPA]2 and TAZ‐[MeOTPATh]2 as HTMs afforded high power conversion efficiencies of 10.9 % and 14.4 %, respectively, showing a photovoltaic performance comparable to that obtained using spiro‐OMeTAD. These synthetically simple and inexpensive HTMs hold promise for replacing the more expensive spiro‐OMeTAD in high‐efficiency perovskite solar cells.  相似文献   

11.
Modulation of the electron-deficient π-bridge units in 4-methoxy-N-(4-methoxyphenyl)-N-phenylbenzenamine (MeTPA)-based hole-transporting materials (HTMs) is a significant approach to improve hole mobility of HTMs for perovskite solar cells (PSCs). In this study, a class of simple MeTPA-based HTMs (H1-H4) with different π-bridged electron-deficient units were designed for the purpose of providing a theoretical model to obtain potential MeTPA-based HTMs. The results indicated that H2 to H4 exhibit better performance, such as larger Stokes shifts, smaller exciton-binding energy, better stability, good solubility, and higher hole mobility, in comparison with the parental material H1. H2 to H4 materials with high hole mobility (5.45 × 10−4, 2.70 × 10−1, and 3.99 × 10−3 cm2 V−1 second−1, respectively) may embody promising HTMs to yield good performance in PSCs. Therefore, the useful information obtained regarding control of the electron-deficient π-bridge units of MeTPA-based HTMs is an effective way to obtain excellent HTMs for PSC applications.  相似文献   

12.
The synthesis of three enamine hole‐transporting materials (HTMs) based on Tröger's base scaffold are reported. These compounds are obtained in a three‐step facile synthesis from commercially available materials without the need of expensive catalysts, inert conditions or time‐consuming purification steps. The best performing material, HTM3, demonstrated 18.62 % PCE in PSCs, rivaling spiro‐OMeTAD in efficiency, and showing markedly superior long‐term stability in non‐encapsulated devices. In dopant‐free PSCs, HTM3 outperformed spiro‐OMeTAD by a factror of 1.6. The high glass‐transition temperature (Tg=176 °C) of HTM3 also suggests promising perspectives in device applications.  相似文献   

13.
Hole transporting material (HTM) is a significant component to achieve the high performance perovskite solar cells (PSCs). Over the years, inorganic, organic and hybrid (organic‐inorganic) material based HTMs have been developed and investigated successfully. Today, perovskite solar cells achieved the efficiency of 22.1 % with with 2,2’,7,7’‐tetrakis(N,N‐di‐p‐methoxyphenyl‐amine) 9,9‐spirobifluorene (spiro‐OMeTAD) as HTM. Nevertheless, synthesis and cost of organic HTMs is a major challenging issue and therefore alternative materials are required. From the past few years, inorganic HTMs showed large improvement in power conversion efficiency (PCE) and stability. Recently CuOx reached the PCE of 19.0% with better stability. These developments affirms that inorganic HTMs are better alternativesto the organic HTMs for next generation PSCs. In this report, we mainly focussed on the recent advances of inorganic and hybrid HTMs for PSCs and highlighted the efficiency and stability of PSCs improved by changing metal oxides as HTMs. Consequently, we expect that energy levels of these inorganic HTMs matches very well with the valence band of perovskites and improved efficiency helps in future practical deployment of low cost PSCs.  相似文献   

14.
Development of high‐performance dopant‐free hole‐transporting materials (HTMs) with comprehensive passivation effects is highly desirable for all‐inorganic perovskite solar cells (PVSCs). Squaraines (SQs) could be a candidate for dopant‐free HTMs as they are natural passivators for perovskites. One major limitation of SQs is their relatively low hole mobility. Herein we demonstrate that polymerizing SQs into pseudo two dimensional (2D) p–π conjugated polymers could overcome this problem. By rationally using N,N‐diarylanilinosquaraines as the comonomers, the resulting polysquaraine HTMs not only exhibit suitable energy levels and efficient passivation effects, but also achieve very high hole mobility close to 0.01 cm?2 V?1 s?1. Thus as dopant‐free HTMs for α‐CsPbI2Br‐based all‐inorganic PVSCs, the best PCE reached is 15.5 %, outperforming those of the doped‐Spiro‐OMeTAD (14.4 %) based control devices and among the best for all‐inorganic PVSCs.  相似文献   

15.
A series of organic electron-rich π-bridged symmetric hydrazones, composed of two donor moieties connected through a thiophene- or a pyrrole-based π-spacer, has been synthesized as a suitable alternative to 2,2’,7,7’-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9’-spirobifluorene ( Spiro-OMeTAD ), considered the benchmark hole transporting material (HTM) in perovskite solar cells (PSCs). The cheap synthetic protocol is suitable for potential large-scale production. All the compounds were characterized, showing good energy levels alignments with the perovskite and very close energy levels to the Spiro-OMeTAD . Furthermore, computational analysis confirmed the electrochemical trend observed. The costs of synthesis were estimated, as well as the produced waste to synthesise the final HTMs, underlining the low impact of these compounds on the environment with the respect to Spiro-OMeTAD . Overall, the relevant electrochemical properties and the low cost of the synthetic approaches allow these compounds to be a greener and easy-to-synthesize alternative to the Spiro-OMeTAD for industrial development of PSCs.  相似文献   

16.
With perovskite‐based solar cells (PSCs) now reaching efficiencies of greater than 20 %, the stability of PSC devices has become a critical challenge for commercialization. However, most efficient hole‐transporting materials (HTMs) thus far still rely on the state‐of‐the‐art methoxy triphenylamine (MOTPA) donor unit in which methoxy groups usually reduce the device stability. Herein, a carbazole‐fluorene hybrid has been employed as a methoxy‐free donor to construct organic HTMs. The indeno[1,2‐b]carbazole group not only inherits the characteristics of carbazole and fluorene, but also exhibits additional advantages arising from the bulky planar structure. Consequently, M129, endowed with indeno[1,2‐b]carbazole simultaneously exhibits a promising efficiency of over 20 % and superior long‐term stability. The hybrid strategy toward the methoxy‐free donor opens a new avenue for developing efficient and stable HTMs.  相似文献   

17.
A set of eight helical diamines were designed and synthesized to demonstrate their relevance as all‐in‐one materials for multifarious applications in organic light‐emitting diodes (OLEDs), that is, as hole‐transporting materials (HTMs), EMs, bifunctional hole transporting + emissive materials, and host materials. Azahelical diamines function very well as HTMs. Indeed, with high Tg values (127–214 °C), they are superior alternatives to popular N,N′‐di(1‐naphthyl)‐N,N′‐diphenyl‐(1,1′‐biphenyl)‐4,4′‐diamine (NPB). All the helical diamines exhibit emissive properties when employed in nondoped as well as doped devices, the performance characteristics being superior in the latter. One of the carbohelical diamines (CHTPA) serves the dual function of hole transport as well as emission in simple double‐layer devices; the efficiencies observed were better by quite some margin than those of other emissive helicenes reported. The twisting endows helical diamines with significantly high triplet energies such that they also function as host materials for red and green phosphors, that is, [Ir(btp)2acac] (btp=2‐(2′‐benzothienyl)pyridine; acac=acetylacetonate) and [Ir(ppy)3] (ppy=2‐phenylpyridine), respectively. The results of device fabrications demonstrate how helicity/ helical scaffold may be diligently exploited to create molecular systems for maneuvering diverse applications in OLEDs.  相似文献   

18.
The energy level of a hole‐transporting material (HTM) in organic electronics, such as organic light‐emitting diodes (OLEDs) and perovskite solar cells (PSCs), is important for device efficiency. In this regard, we prepared 4,4′‐(cyclohexane‐1,1‐diyl)bis[N,N‐bis(4‐methoxyphenyl)aniline] ( TAPC‐OMe ), C46H46N2O4, to tune the energy level of 4,4′‐(cyclohexane‐1,1‐diyl)bis[N,N‐bis(4‐methylphenyl)aniline] ( TAPC ), which is a well‐known HTM commonly used in OLED applications. A systematic characterization of TAPC‐OMe , including 1H and 13C NMR, elemental analysis, UV–Vis absorption, fluorescence emission, density functional theory (DFT) calculations and single‐crystal X‐ray diffraction, was performed. TAPC‐OMe crystallized in the triclinic space group P, with two molecules in the asymmetric unit. The dihedral angles between the central amine triangular planes and those of the phenyl groups varied from 26.56 (9) to 60.34 (8)° due to the steric hindrance of the central cyclohexyl ring. This arrangement might be induced by weak hydrogen bonds and C—H…π(Ph) interactions in the extended structure. The emission maxima of TAPC‐OMe showed a significant bathochomic shift compared to that of TAPC . A strong dependency of the oxidation potentials on the nature of the electron‐donating ability of substituents was confirmed by comparing oxidation potentials with known Hammett parameters (σ).  相似文献   

19.
《化学:亚洲杂志》2017,12(9):958-962
Perovskite solar cells are considered a promising technology for solar‐energy conversion, with power conversion efficiencies currently exceeding 20 %. In most of the reported devices, Spiro‐OMeTAD is used for positive‐charge extraction and transport layer. Although a number of alternative hole‐transporting materials with different aromatic or heteroaromatic fragments have already been synthesized, a cheap and well‐performing hole‐transporting material is still in high demand. In this work, a two‐step synthesis of a carbazole‐based hole‐transporting material is presented. Synthesized compounds exhibited amorphous nature, good solubility and thermal stability. The perovskite solar cells employing the newly synthesized material generated a power conversion efficiency of 16.5 % which is slightly lower than that obtained with Spiro‐OMeTAD (17.5 %). The low‐cost synthesis and high performance makes our hole‐transport material promising for applications in perovskite‐based optoelectronic devices.  相似文献   

20.
In principle, conjugated polymers can work as electron donors and thus as low-cost p-type organic semiconductors to transport holes in photovoltaic devices. With the booming interests in high-efficiency and low-cost solar cells to tackle global climate change and energy shortage, hole transporting materials(HTMs) based on conjugated polymers have received increasing attention in the past decade. In this perspective, recent advances in HTMs for a range of photovoltaic devices including dye-sensitized solar cells(DSSCs), perovskite solar cells(PSCs),and silicon(Si)/organic heterojunction solar cells(HSCs) are summarized and perspectives on their future development are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号