首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In one synthetic step from the readily available 9-Me(2)SCH(2)-nido-7,8-C(2)B(9)H(11) (compound 1), the first representative of the eleven-vertex hypho family of tricarbaboranes, [2,5,12-C(3)B(8)H(15)][X] (X=[NMe4]+ or [PPh4]+) (compound 2), has been isolated in 32% yield and structurally characterised by single-crystal X-ray diffraction, multi-nuclear NMR spectroscopy, mass spectrometry, and computational methods. Both [NMe4]+ or [PPh4]+ salts of anion 2 were found to undergo degradative conversion to the [hypho-6,7-C(2)B(6)H(13)]- anion (anion 3) in alkaline medium. The [PPh4]+ salt of anion 2 converted quantitatively to the [6-CH3-arachno-5,10-C(2)B(8)H(12)]- anion (anion 4) if passed through a silica column or to the neutral 5-CH3-arachno-6,9-C(2)B(8)H(13) (compound 5) on treatment of its [NMe4]+ salt with dilute HCl. Moreover, the reaction of compound 2 with [RhCl2(C(5)Me(5))]2 afforded the eleven-vertex ruthenadicarbaborane [1-C(5)Me(5)-4-CH(3)-closo-1,2,3-RhC(2)B(8)H(9)] (compound 8). All these reactions resulted in an extrusion of one of the cluster carbon atoms into an exoskeletal position.  相似文献   

2.
The new ligand, hydrotris[3-(diphenylmethyl)pyrazol-1-yl]borate, Tp(CHPh2), has been synthesized and its coordination chemistry was compared with that of the analogous Tp(iPr). The new ligand was converted to a variety of complexes, such as M[Tp(CHPh2)]X (M = Co, Ni, Zn; X = Cl, NCO, NCS), Pd[Tp(CHPh2)][eta3-methallyl], Co[Tp(CHPh2)](acac), and Co[Tp(CHPh2)](scorpionate ligand). Compounds Tl[Tp(CHPh2)], 1, Co[Tp(CHPh2)]Cl, 2, Co[Tp(CHPh2)](NCS)(DMF), 3, Ni[Tp(CHPh2)](NCS)(DMF)2, 4, Co[Tp(CHPh2)](acac), 5, Co[Tp(CHPh2)][Ph2Bp], 6, Co[Tp(CHPh2)][Bp(Ph)], 7, Co[Tp(CHPh2)][Tp], 8, and (Ni[Tp(CHPh2)])2[C2O4](H2O)2, 9, were structurally characterized.  相似文献   

3.
The structurally chiral [7-(2'-pyridyl)-7,8-nido-C(2)B(9)H(11)](-), [](-), anion was prepared by a partial degradation reaction of 1-(2'-pyridyl)-1,2-closo-C(2)B(10)H(11). From this anion a protonated specie, H[7-(2'-pyridyl)-7,8-nido-C(2)B(9)H(11)] , and a tetramethylammonium salt, [NMe(4)][7-(2'-pyridyl)-7,8-nido-C(2)B(9)H(11)], [NMe(4)][] can be obtained. The (1)H{(11)B} DNMR study on in the temperature range from 298 to 203 K identified the weakly basic nitrogen atom in the pyridine ring as the proton accepting site in solid state and low temperature and revealed pronounced weakening of the nitrogen-proton interaction while the temperature increases. Capillary electrophoresis and X-ray diffraction confirmed the pyridine nitrogen atom as the proton binding site. Separation of the electrophoretically pure racemic [7-(2'-pyridyl)-7,8-nido-C(2)B(9)H(11)](-) ion into two peaks by the chiral selector beta-cyclodextrine has been achieved.  相似文献   

4.
The structure of [PPh(3)(benzyl)][B(10)H(11)] was determined at -123 degrees C and 24 degrees C by single-crystal X-ray analyses. The B(10) core of [B(10)H(11)](-) is similar in shape to that of [B(10)H(10)](2)(-). The 11th H atom asymmetrically caps a polar face of the cluster and shows no tendency for disorder in the solid state. Variable temperature multinuclear NMR studies shed light on the dynamic nature of [B(10)H(11)](-) in solution. In addition to the fluxionality of the cluster H atoms, the boron cage is fluxional at moderate temperatures, in contrast to [B(10)H(10)](2)(-). Multiple exchange processes are believed to take place as a function of temperature. Results of ab initio calculations are presented. Crystal data: [PPh(3)(benzyl)][B(10)H(11)] at -123 degrees C, P2(1)/c, a = 9.988(2) A, b = 18.860(2) A, c = 15.072(2) A, beta = 107.916(8) degrees, V = 2701.5(7) A(3), Z = 4; [PPh(3)(benzyl)][B(10)H(11)] at 24 degrees C, P2(1)/c, a = 10.067(5) A, b = 19.009(9) A, c = 15.247(7) A, beta = 107.952(9) degrees, V = 2775(2) A(3), Z = 4.  相似文献   

5.
Mono- and dilithium salts of [3,3'-Co(1,2-C(2)B(9)H(11))(2)](-), (1(-)), react with different chlorosilanes (Me(2)SiHCl, Me(2)SiCl(2), Me(3)SiCl and MeSiHCl(2)) with an accurate control of the temperature to give a set of novel C(c)-mono- (C(c) = C(cluster)) and C(c)-disubstituted cobaltabis(dicarbollide) derivatives with silyl functions: [1-SiMe(2)H-3,3'-Co(1,2-C(2)B(9)H(10))(1',2'-C(2)B(9)H(11))](-) (3(-)); [1,1'-mu-SiMe(2)-3,3'-Co(1,2-C(2)B(9)H(10))(2)](-) (4(-)); [1,1'-mu-SiMeH-3,3'-Co(1,2-C(2)B(9)H(10))(2)](-) (5(-)); [1-SiMe(3)-3,3'-Co(1,2-C(2)B(9)H(10))(1',2'-C(2)B(9)H(11))](-) (6(-)) and [1,1'-(SiMe(3))(2)-3,3'-Co(1,2-C(2)B(9)H(10))(2)](-) (7(-)). In a similar way, the [8,8'-mu-(1',2'-C(6)H(4))-1,1'-mu-SiMe(2)-3,3'-Co(1,2-C(2)B(9)H(9))(2)](-) (8(-)); [8,8'-mu-(1',2'-C(6)H(4))-1,1'-mu-SiMeH-3,3'-Co(1,2-C(2)B(9)H(9))(2)](-) (9(-)) and [8,8'-mu-(1',2'-C(6)H(4))-1-SiMe(3)-3,3'-Co(1,2-C(2)B(9)H(9))(1',2'-C(2)B(9)H(10))](-) (10(-)) ions have been prepared from [8,8'-mu-(1',2'-C(6)H(4))-3,3'-Co(1,2-C(2)B(9)H(10))(2)](-) (2(-)). Thus, depending on the chlorosilane, the temperature and the stoichiometry of nBuLi used, it has been possible to control the number of substituents on the C(c) atoms and the nature of the attached silyl function. All compounds were characterised by NMR and UV/Vis spectroscopy and MALDI-TOF mass spectrometry; [NMe(4)]-3, [NMe(4)]-4 and [NMe(4)]-7 were successfully isolated in crystalline forms suitable for X-ray diffraction analyses. The 4(-) and 8(-) ions, which contain one bridging -mu-SiMe(2) group between each of the dicarbollide clusters, were unexpectedly obtained from the reaction of the monolithium salts of 1(-) and 2(-), respectively, with Me(2)SiHCl at -78 degrees C in 1,2-dimethoxyethane. This suggests that an intramolecular reaction has taken place, in which the acidic C(c)-H proton reacts with the hydridic Si-H, with subsequent loss of H(2). Some aspects of this reaction have been studied by using DFT calculations and have been compared with experimental results. In addition, DFT theoretical studies at the B3 LYP/6-311G(d,p) level of theory were applied to optimise the geometries of ions 1(-)-10(-) and calculate their relative energies. Results indicate that the racemic mixtures, rac form, are more stable than the meso isomers. A good concordance between theoretical studies and experimental results has been achieved.  相似文献   

6.
Manganocene, Cp(2)Mn, has been employed as a precursor in the synthesis of a range of Mn(II) dimers of the type [CpMn(micro-X)](2)[X = 8-NHC(9)H(6)N (1), N(Ph)(C(5)H(4)N)(2), N(4-EtC(6)H(4))(C(5)H(4)N)(3) and C[triple bond]CPh (4)] as well as the bis-adduct [Cp(2)Mn[HN=C(NMe(2))(2)](2)](5). The solid-state structures of 1-5 are reported. Variable-temperature magnetic measurements have been used to assess the extent of Mn(micro-X)Mn communication within the dimers of 1-4 as a function of the bridging ligands (X).  相似文献   

7.
The ligands [hydrotris(3-cyclohexylpyrazol-1-yl)borate, [Tp(Cy)](-), tetrakis(3-cyclohexylpyrazol-1-yl)borate, [pz(o)Tp(Cy)](-), and hydrotris(3-cyclohexyl-4-bromopyrazol-1-yl)borate, [Tp(Cy,4Br)](-) were synthesized and characterized as their Tl(I) derivatives. They were converted to a variety of tetrahedral LMX and octahedral LML' complexes, as well as to the dinuclear nickel carbonate complex [Ni(Tp(Cy))](2)(CO(3)), 4, and the compound Ni[Tp(Cy,4Br)][pz(Cy,4Br)](3)(H)(2), 5. The structures of Co[Tp(Cy)]Cl, 1, Co[Tp(Cy,4Br)]Cl, 2, Co[Tp(Cy,4Br)]NCS, 3, [Ni(Tp(Cy))](2)(CO(3)), 4, Ni[Tp(Cy,4Br)][pz(Cy,4Br)](3)(H)(2), 5, and Mo[Tp(Cy)](CO)(2)(eta(3)-methallyl), 6, were determined by X-ray crystallography. The structures of paramagnetic heteroleptic complexes Co[Tp(Cy)][Tp], Co[Tp(Cy)][Tp], Co[Tp(Cy,4Br)][Tp], and Co[Tp(Cy,4Br)][Tp] were established by NMR. The homoleptic compounds Co[Tp(Cy)](2) and Co[Tp(Cy,4Br)](2) rearrange thermally to Co[Tp(Cy)](2) and to Co[Tp((Cy,4Br))](2), respectively, containing one 5-cyclohexyl group/ligand.  相似文献   

8.
The dilithiated boraamidinate complexes [Li(2)[PhB(NDipp)(2)](THF)(3)] (7a) (Dipp = 2,6-diisopropylphenyl) and [Li(2)[PhB(NDipp)(N(t)Bu)](OEt(2))(2)] (7b), prepared by reaction of PhB[N(H)Dipp][N(H)R'] (6a, R' = Dipp; 6b, R' = (t)Bu) with 2 equiv of (n)BuLi, are shown by X-ray crystallography to have monomeric structures with two terminal and one bridging THF ligands (7a) or two terminal OEt(2) ligands (7b). The derivative 7a is used to prepare the spirocyclic group 13 derivative [Li(OEt(2))(4)][In[PhB(NDipp)(2)](2)] (8a) that is shown by an X-ray structural analysis to be a solvent-separated ion pair. The monoamino derivative PhBCl[N(H)Dipp] (9a), obtained by the reaction of PhBCl(2) with 2 equiv of DippNH(2), serves as a precursor for the synthesis of the four-membered BNCN ring [[R'N(H)](Ph)B(mu-N(t)Bu)(2)C(n)Bu] (10a, R' = Dipp). The X-ray structures of 6a, 9a, and 10a have been determined. The related derivative 10b (R' = (t)Bu) was synthesized by the reaction of [Cl(Ph)B(mu-N(t)Bu)(2)C(n)Bu] with Li[N(H)(t)Bu] and characterized by (1)H, (11)B, and (13)C NMR spectra. In contrast to 10a and 10b, NMR spectroscopic data indicate that the derivatives [[DippN(H)](Ph)B(NR')(2)CR(NR')] (11a: R =( t)Bu, R' = Cy; 11b: R = (n)Bu, R' = Dipp) adopt acyclic structures with three-coordinate boron atoms. Monolithiation of 10a produces the novel hybrid boraamidinate/amidinate (bamam) ligand [Li[DippN]PhB(N(t)Bu)C(n)Bu(N(t)Bu)] (12a).  相似文献   

9.
A series of palladium(II) complexes incorporating di-NHC-amine ligands has been prepared and their structural, dynamic and catalytic behaviour investigated. The complexes [trans-(kappa(2)-(tBu)CN(Bn)C(tBu))PdCl(2)] (12) and [trans-(kappa(2)-(Mes)CN(H)C(Mes))PdCl(2)] (13) do not exhibit interaction between the amine nitrogen and palladium atom respectively. NMR spectroscopy between -40 and 25 degrees C shows that the di-NHC-amine ligand is flexible expressing C(s) symmetry and for 13 rotation of the mesityl groups is prevented. In the related C(1) complex [(kappa(3)-(tBu)CN(H)C(tBu))PdCl][Cl] (14) coordination of NHC moieties and amine nitrogen atom is observed between -40 and 25 degrees C. Reaction between 12-14 and two equivalents of AgBF(4) in acetonitrile gives the analogous complexes [trans-(kappa(2)-(tBu)CN(Bn)C(tBu))Pd(MeCN)(2)][BF(4)](2) (15), [trans-(kappa(2)-(Mes)CN(H)C(Mes))Pd(MeCN)(2)][BF(4)](2) (16) and [(kappa(3)-(tBu)CN(H)C(tBu))Pd(MeCN)][BF(4)](2) (17) indicating that ligand structure determines amine coordination. The single crystal X-ray structures of 12, 17 and two ligand imidazolium salt precursors (tBu)C(H)N(Bn)C(H)(tBu)][Cl](2) (2) and [(tBu)C(H)N(H)C(H)(tBu)][BPh(4)](2) (4) have been determined. Complexes 12-14 and 15-17 have been shown to be active precatalysts for Heck and hydroamination reactions respectively.  相似文献   

10.
The coordination compounds [Mg(XeF(2))(2)][AsF(6)](2), [Mg(XeF(2))(4)][AsF(6)](2), [Ca(XeF(2))(2.5)][AsF(6)](2), [Ba(XeF(2))(3)][AsF(6)](2), and [Ba(XeF(2))(5)][AsF(60](2) were characterized by solid-state (19)F and (129)Xe magic-angle spinning NMR spectroscopy. The (19)F and (129)Xe NMR data of [Mg(XeF(2))(2)][AsF(6)](2), [Mg(XeF(2)(4)][AsF(6)](2), and [Ca(XeF(2))(2.5)][AsF(6)](2) were correlated with the previously determined crystal structures. The isotropic (19)F chemical shifts and (1)J((129)Xe-(19)F) coupling constants were used to distinguish the terminal and bridging coordination modes of XeF(2). Chemical-shift and coupling-constant calculations for [Mg(XeF(2))(4)][AsF(6)](2) confirmed the assignment of terminal and bridging chemical-shift and coupling-constant ranges. The NMR spectroscopic data of [Ba(XeF(2))(3)][AsF(6)](2) and [Ba(XeF(2))(5)][AsF(6)](2) indicate the absence of any terminal XeF(2) ligands, which was verified for [Ba(XeF(2))(5)][AsF(6)](2) by its X-ray crystal structure. The adduct [Ba(XeF(2))(5)][AsF(6)](2) crystallizes in the space group Fmmm, with a = 11.6604(14) Angstrom, b = 13.658(2) Angstrom, c = 13.7802(17) Angstrom, V = 2194.5(5) Angstrom(3) at -73 degrees C, Z = 4, and R = 0.0350 and contains two crystallographically independent bridging XeF(2) molecules and one nonligating XeF(2) molecule. The AsF(6-) anions in [Mg(XeF(2))(4)][AsF(6)](2), [Ca(XeF(2))(2.5)][AsF(6)](2), [Ba(XeF(2))(3)][AsF(6)](2), and [Ba(XeF(2))(5)][AsF(6)](2) were shown to be fluxional with the fluorines-on-arsenic being equivalent on the NMR time scale, emulating perfectly octahedral anion symmetry.  相似文献   

11.
Six Mo(IV)-Cu(II) complexes, [Cu(tpa)](2)[Mo(CN)(8)]·15H(2)O (1, tpa = tris(2-pyridylmethyl)amine), [Cu(tren)](2)[Mo(CN)(8)]·5.25H(2)O (2, tren = tris(2-aminoethyl)amine), [Cu(en)(2)][Cu(0.5)(en)][Cu(0.5)(en)(H(2)O)][Mo(CN)(8)]·4H(2)O (3, en = ethylenediamine), [Cu(bapa)](3)[Mo(CN)(8)](1.5)·12.5H(2)O (4, bapa = bis(3-aminopropyl)amine), [Cu(bapen)](2)[Mo(CN)(8)]·4H(2)O (5, bapen = N,N'-bis(3-aminopropyl)ethylenediamine), and [Cu(pn)(2)][Cu(pn)][Mo(CN)(8)]·3.5H(2)O (6, pn = 1,3-diaminopropane), were synthesized and characterized. Single-crystal X-ray diffraction analyses show that 1-6 have different structures varying from trinuclear clusters (1-2), a one-dimensional belt (3), two-dimensional grids (4-5), to a three-dimensional structure (6). Magnetic and ESR measurements suggest that 1-6 exhibit thermally reversible photoresponsive properties on UV light irradiation through a Mo(IV)-to-Cu(II) charge transfer mechanism. A trinuclear compound [Cu(II)(tpa)](2)[Mo(V)(CN)(8)](ClO(4)) (7) was synthesized as a model of the photoinduced intermediate.  相似文献   

12.
Five new organic-inorganic assemblies, [Co(en)(3)][Co(en)(2)As(8)V(14)O(42)(H(2)O)].16H(2)O (1), [Ni(Meen)(3)](4)[Ni(Meen)(2)][As(8)V(14)O(42)(NO(3))](2).8H(2)O (2), [Cd(en)(3)][Cd(phen)(en)(H(2)O)(2)][(en)CdAs(8)V(13)O(41)(H(2)O)].1.5H(2)O (3), [Cd(phen)(2)(en)](2)[(phen)CdAs(8)V(13)O(41)(H(2)O)].21H(2)O.phen (4), [Zn(en)(2)](2)[(bpe)(2)Zn(2)As(8)V(12)O(40)(H(2)O)] (5) (en = ethylenediamine, Meen = 1,2-diaminopropane, phen = 1,10-phenanthroline, and bpe= 1,2-bis(4-pyridyl)ethylene) have been synthesized and characterized. Among them, compounds 1 and 2 are constructed from the [As(8)V(14)O(42)] cluster; compounds 3 and 4 are constructed from the Cd-substituted polyoxovanadate [CdAs(8)V(13)O(41)] cluster, while compound 5 consists of bizinic-substituted polyoxovanadate [Zn(2)As(8)V(12)O(40)] building units. It can be assumed that the metal ions used in these reaction systems play a crucial role in controlling the formation of the arsenic-vanadium-cluster backbones, and further leading to the formation of hybrids based on these clusters.  相似文献   

13.
[NMe(4)][R(f)Te(SC(S)NR(2))(2)] derivatives are selectively formed by the oxidation of [NMe(4)]TeR(f) (R(f) = CF(3), C(2)F(5)) with [R(2)NC(S)S](2) (NR(2) = NEt(2), NBz(2), N(CH(2))(4)) in almost quantitative yields. An alternative route to obtain the dithiocarbamato complex anions offer reactions of Te[SC(S)NR(2)](2) (NR(2) = NEt(2), NBz(2)) with equimolar amounts of Me(3)SiR(f) and [NMe(4)]F. Some of the derivatives were recrystallized with bulky cations in order to determine the crystal structures. Structural elucidation by diffraction methods exhibit the structural feature of a distorted pentagonal planar environment (resembling "butterflies") around the tellurium centres. The carbamato tellurates can be transferred easily into the neutral derivatives, R(f)TeSC(S)NR(2), upon treatment with Ag[BF(4)]. In solution they equilibrate with Te(2)(R(f))(2) and [R(2)NC(S)S](2) and finally are transformed into Te(R(f))(2), Te[SC(S)NR(2)](2), and Te[SC(S)NR(2)](4), respectively. All compounds are fully characterized by NMR spectroscopic methods ((1)H, (13)C, (19)F, (125)Te). Additionally, synthesis and characterization of the hitherto unknown derivative [NMe(4)]TeC(2)F(5) are described.  相似文献   

14.
The synthesis and characterization of a series of cyclo-alkylammonium pentaborate salts {[cyclo-C(n)H(2n-1)NR(3)][B(5)O(6)(OH)(4)] (R = H, n = 3, 5-7 (1-4); R = Me, n = 6 (5))} are reported. Compounds 1, 2 and 5 have been further characterized by single-crystal XRD studies. Attempted recrystallization of 3 and 4 yielded small crops of the unexpected heptaborate salts, [cyclo-C(6)H(11)NH(3)](2)[B(7)O(9)(OH)(5)]·3H(2)O·B(OH)(3) (6) and [cyclo-C(7)H(13)NH(3)](2)[B(7)O(9)(OH)(5)]·2H(2)O·2B(OH)(3) (7) which were also characterized crystallographically. All compounds show extensive supramolecular H-bonded anionic lattices templated by the cations. H-bond interactions are described in detail. TGA-DSC analysis of the pentaborates 1-5 showed that they thermally decomposed in air at 800 °C to 2.5B(2)O(3), in a 2 step process involving dehydration (<250 °C) and oxidative decomposition (250-600 °C). BET analysis of materials derived from the pentaborates had internal porosities of <1 m(2) g(-1).  相似文献   

15.
The formation of adducts of tris(pentafluorophenyl)borane with strongly coordinating anions such as CN(-) and [M(CN)(4)](2)(-) (M = Ni, Pd) is a synthetically facile route to the bulky, very weakly coordinating anions [CN[B(C(6)F(5))(3)](2)](-) and [M[CNB(C(6)F(5))(3)](4)](2-) which are isolated as stable NHMe(2)Ph(+) and CPh(3)(+) salts. The crystal structures of [CPh(3)][CN[B(C(6)F(5))(3)](2)] (1), [CPh(3)][ClB(C(6)F(5))(3)] (2), [NHMe(2)Ph](2)[Ni[CNB(C(6)F(5))(3)](4)].2Me(2)CO (4b.2Me(2)CO), [CPh(3)](2)[Ni[CNB(C(6)F(5))(3)](4)].2CH(2)Cl(2) (4c.2CH(2)Cl(2)), and [CPh(3)](2)[Pd[CNB(C(6)F(5))(3)](4)].2CH(2)Cl(2) (5c.2CH(2)Cl(2)) are reported. The CN stretching frequencies in 4 and 5 are shifted by approximately 110 cm(-1) to higher wavenumbers compared to the parent tetracyano complexes in aqueous solution, although the M-C and C-N distances show no significant change on B(C(6)F(5))(3) coordination. Zirconocene dimethyl complexes L(2)ZrMe(2) [L(2) = Cp(2), SBI = rac-Me(2)Si(Ind)(2)] react with 1, 4c or 5c in benzene solution at 20 degrees C to give the salts of binuclear methyl-bridged cations, [(L(2)ZrMe)(2)(mu-Me)][CN[B(C(6)F(5))(3)](2)] and [(L(2)ZrMe)(2)(mu-Me)](2)[M[CNB(C(6)F(5))(3)](4)]. The reactivity of these species in solution was studied in comparison with the known [[(SBI)ZrMe](2)(mu-Me)][B(C(6)F(5))(4)]. While the latter reacts with excess [CPh(3)][B(C(6)F(5))(4)] in benzene to give the mononuclear ion pair [(SBI)ZrMe(+).B(C(6)F(5))(4)(-)] in a pseudo-first-order reaction, k = 3 x 10(-4) s(-1), [(L(2)ZrMe)(2)(mu-Me)][CN[B(C(6)F(5))(3)](2)] reacts to give a mixture of L(2)ZrMe(mu-Me)B(C(6)F(5))(3) and L(2)ZrMe(mu-NC)B(C(6)F(5))(3). Recrystallization of [Cp' '(2)Zr(mu-Me)(2)AlMe(2)][CN[B(C(6)F(5))(3)](2)] affords Cp' '(2)ZrMe(mu-NC)B(C(6)F(5))(3) 6, the X-ray structure of which is reported. The stability of [(L(2)ZrMe)(2)(mu-Me)](+)X(-) decreases in the order X = [B(C(6)F(5))(4)] > [M[CNB(C(6)F(5))(3)](4)] > [CN[B(C(6)F(5))(3)](2)] and increases strongly with the steric bulk of L(2) = Cp(2) < SBI. Activation of (SBI)ZrMe(2) by 1 in the presence of AlBu(i)(3) gives extremely active ethene polymerization catalysts. Polymerization studies at 1-7 bar monomer pressure suggest that these, and by implication most other highly active ethene polymerization catalysts, are strongly mass-transport limited. By contrast, monitoring propene polymerization activities with the systems (SBI)ZrMe(2)/1/AlBu(i)(3) and CGCTiMe(2)/1/AlBu(i)(3) at 20 degrees C as a function of catalyst concentration demonstrates that in these cases mass-transport limitation is absent up to [metal] approximately 2 x 10(-5) mol L(-1). Propene polymerization activities decrease in the order [CN[B(C(6)F(5))(3)](2)](-) > [B(C(6)F(5))(4)](-) > [M[CNB(C(6)F(5))(3)](4)](2-) > [MeB(C(6)F(5))(3)](-), with differences in activation barriers relative to [CN[B(C(6)F(5))(3)](2)](-) of DeltaDeltaG = 1.1 (B(C(6)F(5))(4)(-)), 4.1 (Ni[CNB(C(6)F(5))(3)](4)(2-)) and 10.7-12.8 kJ mol(-)(1) (MeB(C(6)F(5))(3)(-)). The data suggest that even in the case of very bulky anions with delocalized negative charge the displacement of the anion by the monomer must be involved in the rate-limiting step.  相似文献   

16.
The synthesis and characterisation of a pyridazine-containing two-armed grid ligand L2 (prepared from one equivalent of 3,6-diformylpyridazine and two equivalents of p-anisidine) and the resulting transition metal (Zn, Cu, Ni, Co, Fe, Mn) complexes (1-9) are reported. Single-crystal X-ray structure determinations revealed that the copper(I) complex had self-assembled as a [2 x 2] grid, [Cu(I) (4)(L2)(4)][PF(6)](4).(CH(3)CN)(H(2)O)(CH(3)CH(2)OCH(2)CH(3))(0.25) (2.(CH(3)CN)(H(2)O)(CH(3)CH(2)OCH(2)CH(3))(0.25)), whereas the [Zn(2)(L2)(2)(CH(3)CN)(2)(H(2)O)(2)][ClO(4)](4).CH(3)CN (1.CH(3)CN), [Ni(II) (2)(L2)(2)(CH(3)CN)(4)][BF(4)](4).(CH(3)CH(2)OCH(2)CH(3))(0.25) (5 a.(CH(3)CH(2)OCH(2)CH(3))(0.25)) and [Co(II) (2)(L2)(2)(H(2)O)(2)(CH(3)CN)(2)][ClO(4)](4).(H(2)O)(CH(3)CN)(0.5) (6 a.(H(2)O)(CH(3)CN)(0.5)) complexes adopt a side-by-side architecture; iron(II) forms a monometallic cation binding three L2 ligands, [Fe(II)(L2)(3)][Fe(III)Cl(3)OCl(3)Fe(III)].CH(3)CN (7.CH(3)CN). A more soluble salt of the cation of 7, the diamagnetic complex [Fe(II)(L2)(3)][BF(4)](2).2 H(2)O (8), was prepared, as well as two derivatives of 2, [Cu(I) (2)(L2)(2)(NCS)(2)].H(2)O (3) and [Cu(I) (2)(L2)(NCS)(2)] (4). The manganese complex, [Mn(II) (2)(L2)(2)Cl(4)].3 H(2)O (9), was not structurally characterised, but is proposed to adopt a side-by-side architecture. Variable temperature magnetic susceptibility studies yielded small negative J values for the side-by-side complexes: J=-21.6 cm(-1) and g=2.17 for S=1 dinickel(II) complex [Ni(II) (2)(L2)(2)(H(2)O)(4)][BF(4)](4) (5 b) (fraction monomer 0.02); J=-7.6 cm(-1) and g=2.44 for S= 3/2 dicobalt(II) complex [Co(II) (2)(L2)(2)(H(2)O)(4)][ClO(4)](4) (6 b) (fraction monomer 0.02); J=-3.2 cm(-1) and g=1.95 for S= 5/2 dimanganese(II) complex 9 (fraction monomer 0.02). The double salt, mixed valent iron complex 7.H(2)O gave J=-75 cm(-1) and g=1.81 for the S= 5/2 diiron(III) anion (fraction monomer=0.025). These parameters are lower than normal for Fe(III)OFe(III) species because of fitting of superimposed monomer and dimer susceptibilities arising from trace impurities. The iron(II) centre in 7.H(2)O is low spin and hence diamagnetic, a fact confirmed by the preparation and characterisation of the simple diamagnetic iron(II) complex 8. M?ssbauer measurements at 77 K confirmed that there are two iron sites in 7.H(2)O, a low-spin iron(II) site and a high-spin diiron(III) site. A full electrochemical investigation was undertaken for complexes 1, 2, 5 b, 6 b and 8 and this showed that multiple redox processes are a feature of all of them.  相似文献   

17.
In analogy to the [M(II)(bpy)(3)](2+) cations, where M(II) is a divalent transition-metal and bpy is 2,2'-bipyridine, the tris-chelated [M(III)(bpy)(3)](3+) cations, where M(III) is Cr(III) or Co(III), induce the crystallization of chiral, anionic three-dimensional (3D) coordination polymers of oxalate-bridged (&mgr;-ox) metal complexes with stoichiometries [M(II)(2)(ox)(3)](n)()(2)(n)()(-) or [M(I)M(III)(ox)(3)](n)()(2)(n)()(-). The tripositive charge is partially compensated by inclusion of additional complex anions like ClO(4)(-), BF(4)(-), or PF(6)(-) which are encapsulated in cubic shaped cavities formed by the bipyridine ligands of the cations. Thus, an elaborate structure of cationic and anionic species within a polymeric anionic network is realized. The compounds isolated and structurally characterized include [Cr(III)(bpy)(3)][ClO(4)] [NaCr(III)(ox)(3)] (1), [Cr(III)(bpy)(3)][ClO(4)][Mn(II)(2)(ox)(3)] (2), [Cr(III)(bpy)(3)][BF(4)] [Mn(II)(2)(ox)(3)] (3), [Co(III)(bpy)(3)][PF(6)][NaCr(III)(ox)(3)] (4). Crystal data: 1, cubic, P2(1)3, a = 15.523(4) ?, Z = 4; 2, cubic, P4(1)32, a = 15.564(3) ?, Z = 4; 3, cubic, P4(1)32, a = 15.553(3) ?, Z = 4; 4, cubic, P2(1)3, a = 15.515(3) ?, Z = 4. Furthermore, it seemed likely that 1,2-dithiooxalate (dto) could act as an alternative to the oxalate bridging ligand, and as a result the compound [Ni(II)(phen)(3)][NaCo(III)(dto)(3)].C(3)H(6)O (5) has successfully been isolated and structurally characterized. Crystal data: 5, orthorhombic, P2(1)2(1)2(1), a = 16.238(4) ?, b = 16.225(4) ?, c = 18.371(5) ?, Z = 4. In addition, the photophysical properties of compound 1 have been investigated in detail. In single crystal absorption spectra of [Cr(III)(bpy)(3)][ClO(4)][NaCr(III)(ox)(3)] (1), the spin-flip transitions of both the [Cr(bpy)(3)](3+) and the [Cr(ox)(3)](3)(-) chromophores are observed and can be clearly distinguished. Irradiating into the spin-allowed (4)A(2) --> (4)T(2) absorption band of [Cr(ox)(3)](3)(-) results in intense luminescence from the (2)E state of [Cr(bpy)(3)](3+) as a result of rapid energy transfer processes.  相似文献   

18.
Six new inorganic-organic salts, all containing iodobismuthate anions and d-metal coordination cations, were synthesized solvothermally from reactions of bismuth iodide, a transition metal (M) nitrate salt (M = Co, Fe or Zn), and a heterocyclic, chelating organic ligand: 1,10-phenanthroline (1,10-phen), 3,4,7,8-tetramethyl-1,10-phenanthroline (TMphen), or 2,2':6',2'-terpyridine (tpy). All six compounds were structurally analyzed by single crystal X-ray diffraction, including variable temperature crystallographic analysis to monitor for structural changes. Furthermore, those containing novel anions and achieved in high yield were additionally characterized by solid-state UV visible spectroscopy at room temperature. [Co(1,10-phen)(3)][Bi(3)I(11)] (1), [Fe(1,10-phen)(3)][Bi(3)I(11)] (2), and [Zn(1,10-phen)(3)][Bi(3)I(11)] (3) are isostructural. They crystallize in the monoclinic space group P2(1)/n and contain the unprecedented iodobismuthate anion, [Bi(3)I(11)](2-), which exhibits near D(3h) symmetry and has an unusual arrangement of three cis face-sharing BiI(6) octahedra. [Co(TMPhen)(3)](2)[Bi(2)I(9)][I] (4), which crystallizes in the trigonal space group P-31c, and [Co(tpy)(2)](2)[Bi(2)I(9)][I] (5) and [Zn(tpy)(2)](2)[Bi(2)I(9)][I] (6), which are isostructural and crystallize in the monoclinic space group C2/c, contain the discrete binuclear [Bi(2)I(9)](3-) anion, common in previously reported iodobismuthate compounds. In addition they contain unusual isolated I(-) anions, which are rarely encountered in iodobismuthate phases. Compounds 1-6 show constitutional similarities while utilizing different organic ligands and illustrate the sensitive dependence of reaction conditions on the identity of the halometalate anion formed. Additionally, all six compounds and the starting material BiI(3) are thermochromic; the origin of this behavior is spectroscopically and crystallographically investigated.  相似文献   

19.
The salts [Pt{C(NHMe)(2)}(4)][Au(CN)(2)](2), [Pt{C(NHMe)(2)}(4)][Ag(2)(CN)(3)][Ag(CN)(2)], [Pt(en)(2)][Au(CN)(2)](2), [Pt(en)(2)][Ag(CN)(2)](2), and [Pt(bipy)(2)][Au(CN)(2)](2) have been prepared by mixing solutions of salts containing the appropriate cation with solutions of K[Au(CN)(2)] or K[Ag(CN)(2)]. Because the platinum atom in the cation is sterically protected, the structures of [Pt{C(NHMe)(2)}(4)][Au(CN)(2)](2) and [Pt{C(NHMe)(2)}(4)][Ag(2)(CN)(3)][Ag(CN)(2)] reveal no close metal-metal interactions. Colorless crystals of [Pt(en)(2)][Au(CN)(2)](2) and [Pt(en)(2)][Ag(CN)(2)](2) are isostructural and involve extended chains of alternating cations and anions that run parallel to the crystallographic a axis, along with isolated anions. In the chains, the metal-metal separations are relatively short: Pt...Au, 3.1799(3) Angstroms; Pt...Ag, 3.1949(2) Angstroms. In [Pt(bipy)(2)][Au(CN)(2)](2), each cation has axial interactions with the anions through close Pt...Au contacts [3.1735(6) Angstroms]. In addition, the anions are weakly linked through Au...Au contacts of 3.5978(9) Angstroms. Unlike the previously reported Pt/Au complex [Pt(NH(3))(4)][Au(CN)(2)](2).1.5H(2)O, which is luminescent, none of the salts reported here luminesce.  相似文献   

20.
The compounds [K(18-crown-6)](3)[Ir(Se(4))(3)] (1), [K(2.2.2-cryptand)](3)[Ir(Se(4))(3)].C(6)H(5)CH(3) (2), and [K(18-crown-6)(DMF)(2)][Ir(NCCH(3))(2)(Se(4))(2)] (3) (DMF = dimethylformamide) have been prepared from the reaction of [Ir(NCCH(3))(2)(COE)(2)][BF(4)] (COE = cyclooctene) with polyselenide anions in acetonitrile/DMF. Analogous reactions utilizing [Rh(NCCH(3))(2)(COE)(2)][BF(4)] as a Rh source produce homologues of the Ir complexes; these have been characterized by (77)Se NMR spectroscopy. [NH(4)](3)[Ir(S(6))(3)].H(2)O.0.5CH(3)CH(2)OH (4) has been synthesized from the reaction of IrCl(3).nH(2)O with aqueous (NH(4))(2)S(m)(). In the structure of [K(18-crown-6)](3)[Ir(Se(4))(3)] (1) the Ir(III) center is chelated by three Se(4)(2)(-) ligands to form a distorted octahedral anion. The structure contains a disordered racemate of the Deltalambdalambdalambda and Lambdadeltadeltadelta conformers. The K(+) cations are pulled out of the planes of the crowns and interact with Se atoms of the [Ir(Se(4))(3)](3)(-) anion. [K(2.2.2-cryptand)](3)[Ir(Se(4))(3)].C(6)H(5)CH(3) (2) possesses no short K.Se interactions; here the [Ir(Se(4))(3)](3)(-) anion crystallizes as the Deltalambdalambdadelta/Lambdadeltadeltalambda racemate. In the crystal structure of [K(18-crown-6)(DMF)(2)][Ir(NCCH(3))(2)(Se(4))(2)] (3), the K(+) cation is coordinated by an 18-crown-6 ligand and two DMF molecules and the anion comprises an octahedral Ir(III) center bound by two chelating Se(4)(2)(-) chains and two trans acetonitrile groups. The [Ir(Se(4))(3)](3)(-) and [Rh(Se(4))(3)](3)(-) anions undergo conformational transformations as a function of temperature, as observed by (77)Se NMR spectroscopy. The thermodynamics of these transformations are: [Ir(Se(4))(3)](3)(-), DeltaH = 2.5(5) kcal mol(-)(1), DeltaS = 11.5(2.2) eu; [Rh(Se(4))(3)](3)(-), DeltaH = 5.2(7) kcal mol(-)(1), DeltaS = 24.7(3.0) eu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号