首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用密度函数理论B3LYP方法和6-31G(d,p),6-311G(d,p)及6-311+G(d,p)基组,分别对1-C4H^+~8,2-C4H^+~8和C4H^+~10进行了构型优化和频率分析计算,预言1-C4H^+~8具有非平面构型,与以往报道的从头算和密度函数理论计算结果不同。在各自由基阳离子的B3LYP构型上,进行了B3LYP、MP2及MRSDCI方法的超精细偶合常数计算,得到了比以往更好的结果,特别是MP2/B3LYP计算值是至今与实验值符合得最好的理论计算结果。  相似文献   

2.
Systematic and extensive conformational searches of aspartic acid in gas phase and in solution have been performed. For the gaseous aspartic acid, a total of 1296 trial canonical structures and 216 trial zwitterionic structures were generated by allowing for all combinations of internal single-bond rotamers. All the trial structures were optimized at the B3LYP/6-311G* level and then subjected to further optimization at the B3LYP/6-311++G** level. A total of 139 canonical conformers were found, but no stable zwitterionic structure was found. The rotational constants, dipole moments, zero-point vibrational energies, harmonic frequencies, and vertical ionization energies of the canonical conformers were determined. Single-point energies were also calculated at the MP2/6-311++G** and CCSD/6-311++G** levels. The equilibrium distributions of the gaseous conformers at various temperatures were calculated. The proton affinity and gas phase basicity were calculated and the results are in excellent agreement with the experiments. The conformations in the solution were studied with different solvation models. The 216 trial zwitterionic structures were first optimized at the B3LYP/6-311G* level using the Onsager self-consistent reaction field model (SCRF) and then optimized at the B3LYP/6-311++G** level using the conductorlike polarized continuum model (CPCM) SCRF theory. A total of 22 zwitterions conformers were found. The gaseous canonical conformers were combined with the CPCM model and optimized at the B3LYP/6-311++G** level. The solvated zwitterionic and canonical structures were further examined by the discrete/SCRF model with one and two water molecules. The incremental solvation of the canonical and zwitterionic structures with up to six water molecules in gas phase was systematically examined. The studies show that combining aspartic acid with at least six water molecules in the gas phase or two water molecules and a SCRF solution model is required to provide qualitatively correct results in the solution.  相似文献   

3.
In gas phase, the hydrations of pentafulvenone to generate three types of cyclopentadienyl carboxylic acids are studied theoretically at the MP2/6-311+G**//B3LYP/6-311+G** level. A water molecule attacking the C=O double bond of pentafulvenone can yield cyclopentadienyl carboxylic acids via the formation of fulvenediols, and attacking the C=C double bond of pentafulvenone can directly yield cyclopentadienyl carboxylic acid. The barriers of rate-determining transition states are 42.2 and 30.4 kcal mol−1, respectively. The barriers of rate-determining transition states for two water molecules system are 20.2 and 19.6 kcal mol−1, respectively. The products can isomerize to each other. In aqueous solvent, the hydrations of pentafulvenone are investigated using PCM-UAHF model at the MP2 (PCM)/6-311+G**// B3LYP (PCM)/6-311+G** and MP2 (PCM)/6-311+G**// B3LYP/6-311+G** levels. The barriers of all rate-determining transition states are decreased. The added water molecule acts as catalyst in both gas phase and aqueous solvent. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
赵彦英  刘亚军  吴育飞  郑世钧 《化学学报》2002,60(11):1957-1964
使用密度泛函理论B3LYP方法和6-31G(d,p),6-31+G(d,p),6-311G(d,p)及6- 311+G(d,p)基组,分别对1-C_6H_(12)~+,2-C_6H_(12)~+和3-C_6H_(12)~+的各种构 象进行了几何构型优化,并在B3LYP/6-311G(d,p)水平上进行了频率分析计算,在 各优化构型上,使用B3LYP和MP2(full)方法进行了超精细结构的计算。计算的3- C_6H_(12)~+的超精细偶合常数比以往的计算结果更好;1-C_6H_(12)~+和2-C_6H_ (12)~+的超精细偶合常数目前尚无实验数据报道,本计算预言了它们的超精细偶合 常数和最稳定构型。  相似文献   

5.
使用密度泛函理论B3LYP方法和6-31G(d,p)、6-31+G(d,p)、6-311G(d,p)及6-311+G(d,p)基组,分别对2-C5H10+和1-C5H10+的各种构象进行了几何构型优化,并用B3LYP/6-311G(d,p)进行了频率分析计算.计算预言1-C5H10+具有非平面构型,与以往报导的从头算计算结论相反.在两个自由基阳离子的各种构象的B3LYP几何构型上,进行了B3LYP和UMP2(full)方法的超精细偶合常数计算,得到了比以往更好的结果.  相似文献   

6.
The conformational stability and the three rotor internal rotations in 3-chloro- and 3-bromo-1-propanols were investigated by DFT-B3LYP/6-311+G and ab initio MP2/6-311+G, MP3/6-311+G and MP4(SDTQ)//MP3/6-311+G levels of theory. On the calculated potential energy surface twelve distinct minima were located all of which were not predicted to have imaginary frequencies at the B3LYP level of theory. The calculated lowest energy minimum in the potential curves of both molecules was predicted to correspond to the Gauche-gauche-trans (Ggt) conformer in excellent agreement with earlier microwave and electron diffraction results. The equilibrium constants for the conformational interconversion of the two 3-halo-1-propanols were calculated at the B3LYP/6-311+G level of calculation and found to correspond to an equilibrium mixture of about 32% Ggt, 18% Ggg1, 13% Tgt, 8% Tgg and 8% Gtt conformations for 3-chloro-1-propanol and 34% Ggt, 15% Tgt, 13% Ggg1, 9% Tgg and 7% Gtt conformations for 3-bromo-1-propanol at 298.15K. The nature of the high energy conformations was verified by carrying out solvent experiments using formamide ( epsilon=109.5) and MP3 and MP4//MP3 calculations. The vibrational frequencies of each molecule in its three most stable forms were computed at the B3LYP level and complete vibrational assignments were made based on normal coordinate calculations and comparison with experimental data of the molecules.  相似文献   

7.
The structural properties of the three open chain C4H8O4 sugars, i.e. two aldoses (erythrose and threose) and one ketose (erythrulose), have been investigated by DFT and ab initio calculations to get accurate structures and relative energies. The structure of all the conformers predicted within 10 kJ/mol has been optimized at the B3LYP/6-311++G(d,p) level of the theory. Two types of intramolecular hydrogen bonds have been clearly identified. They are related to the hydroxyl and to the carbonyl oxygen atoms and are of weak and middle strength, respectively. The most stable structures have been optimized at the B3LYP/6-311++G(2df,p) and at the MP2/6-311++G(2df,p) levels of the theory in order to calculate accurate rotational parameters and dipole moment for their future detection in the microwave range in the gas phase. Their corresponding harmonic IR spectra have also been calculated and their fingerprint signature is discussed in the region of the OH stretching vibrations, of the torsion of the C–O bonds and of the deformation of the C–C skeleton.  相似文献   

8.
A stochastic exploration of the quantum conformational space for the (H(2)O)(n)Li(+), n = 3, 4, 5 complexes produced 32 molecular clusters at the B3LYP/6-311++G** and MP2/6-311++G** levels. The first solvation shell is predicted to comprise a maximum of 4 water molecules. Energy decomposition analyses were performed to determine the relationship between the geometrical features of the complexes and the types of interactions responsible for their stabilization. Our findings reveal that electrostatic interactions are major players determining the structures and relative stabilities of the clusters. The formal charge on the Li atom leads to two distinct types of hydrogen bonds, scattered in a wide range of distances (1.61-2.32 ?), in many cases affording H-bonds that are considerably larger and considerably shorter than those in pure water clusters (typically ~1.97 ?).  相似文献   

9.
Density functional methods have been employed to characterize the gas phase conformations of selenocysteine. The 33 stable conformers of selenocysteine have been located on the potential energy surface using density functional B3LYP/6‐31+G* method. The conformers are analyzed in terms of intramolecular hydrogen bonding interactions. The proton affinity, gas phase acidities, and bond dissociation energies have also been evaluated for different reactive sites of selenocysteine for the five lowest energy conformers at B3LYP/6‐311++G*//B3LYP/6‐31+G* level. Evaluation of these intrinsic properties reflects the antioxidant activity of selenium in selenocysteine. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

10.
Studies based on ab initio optimized geometries (at B3LYP/6-311+G** and MP2/6-311+G** levels) and on experimental structures retrieved from the Cambridge Structural Database (CSD) reveal that the nucleobases constituting DNA and RNA differ significantly in their aromatic character, as shown by the geometry-based index of aromaticity HOMA that ranges from 0.466 for thymine to 0.917 for adenine, based on B3LYP/6-311+G** calculations, and 0.495-0.926, respectively, if based on the MP2/6-311+G** level. Aromaticity of the bases decreases markedly with an increase of the number of double-bond C=X (X = N, O) substituents at the rings. H-bonds involving C=O groups in Watson-Crick pairs cause an increase of the aromatic character of the rings.  相似文献   

11.
The gas-phase reactions between Ca(2+) and selenourea were investigated by means of electrospray/tandem mass spectrometry techniques. The MS/MS spectra of [Ca(selenourea)](2+) complexes show intense peaks at m/z 43, 121, 124, and 146 and assigned to monocations produced in different coulomb explosion processes. The structures and bonding characteristics of the stationary points of the [Ca(selenourea)](2+) potential energy surface (PES) were theoretically studied by DFT calculations carried out at the B3LYP/6-311+G(3df,2p)//B3LYP/6-311+G(d,p) level. The analysis of the topology of this PES allows identification of H(2)NCNH(+), CaSeH(+), selenourea(+). and CaNCSe(+) ion peaks at m/z 43, 121, 124, and 146, respectively. The reactivity of selenourea and the topology of the corresponding potential energy surface mimic that of thiourea. However, significant dissimilarities are found with respect to urea. The dissociative electron-transfer processes, not observed for urea, is one of the dominant fragmentations for selenourea, reflecting its much lower ionization energy. Similarly, the coulomb explosions yielding CaXH(+) + H(2)NCNH(+) (X = O or Se), which for urea are not observed, are very favorable for selenourea. Finally, while in urea the loss of NH(3) competes with the formation of NH(4+), for selenourea the latter process is clearly dominant.  相似文献   

12.
The B3LYP/6-31+G(d) molecular geometry optimized structures of 17 five-membered heterocycles were employed together with the gauge including atomic orbitals (GIAO) density functional theory (DFT) method at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p) and B3LYP/6-311+G(2d,p) levels of theory for the calculation of proton and carbon chemicals shifts and coupling constants. The method of geometry optimization for pyrrole (1), N-methylpyrrole (2) and thiophene (7) using the larger 6-311++G(d,p) basis sets at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p), B3LYP/6-31+G(2d,p) and B3LYP/cc-pVTZ levels of theory gave little difference between calculated and experimental values of coupling constants. In general, the (1)H and 13C chemical shifts for all compounds are in good agreement with theoretical calculations using the smaller 6-31 basis set. The values of nJHH(n=3, 4, 5) and rmnJ(CH)(n=1, 2, 3, 4) were predicted well using the larger 6-31+G(d,p) and 6-311++G(d,p) basis sets and at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p), B3LYP/6-31+G(2d,2p) levels of theory. The computed atomic charges [Mülliken; Natural Bond Orbital Analysis (NBO); Merz-Kollman (MK); CHELP and CHELPG] for the B3LYP/6-311++G(d,p) geometry optimized structures of 1-17 were used to explore correlations with the experimental proton and carbon chemical shifts.  相似文献   

13.
An extensive exploration of the conformational space has been carried out to characterize all possible gas phase structures of leucine. A total of 324 unique trial structures for canonical leucine were generated by considering all possible combinations of single bond rotamers. All trial structures were optimized at the B3LYP/6-311G* level of the DFT method. A total of 77 unique and stationary canonical conformers were found. Further, 15 most stable conformers were reoptimized at B3LYP/6-311++G** level and their respective relative energies, vertical ionization energies, hydrogen bonding patterns, rotational constants and dipole moments were calculated. A single point energy calculations for leucine conformers have also been done at both B3LYP/6-311++G(2df, p) and MP2/6-311++G(2df, p) levels. The good agreement between our estimates of rotational constants for two most stable conformers and available experimental measurements supports the reliability of the B3LYP/6-311++G** level of theory for describing the conformational behavior of leucine molecule. The proton affinity and gas phase basicity were also determined. Using the statistical approach, conformational distributions at various temperatures have also been performed and analyzed. Vibrational spectra were also calculated. It is also observed that zwitterions of leucine are not stable in gas phase.  相似文献   

14.
A full structural assignment of the conformers of gaseous tyrosine is presented. A total of 1296 unique trial structures were generated by allowing for all combinations of internal single-bond rotamers and optimized at the B3LYP6-311G* level of theory and then subjected to further optimization at the B3LYP6-311++G** level. A total of 76 conformers are found and their dipole moments, rotational constants, and harmonic frequencies are determined. Accurate relative energies are given at the MP26-311G(2df,p)B3LYP6-311++G** level of theory. Characteristic H-bonding types are classified and listed for all the conformers. The four most stable conformers display an intramolecular H bond, COOH...NH(2), and an additional H-bonding interaction between the amino group and pi electron of the aromatic ring. The results further confirm that the global minimum conformations of the aromatic amino acids have the same H-bonding type. Combined with statistical mechanics principles, conformational distributions at various temperatures are computed and the temperatures with which the theoretical results match that of experiments are indicated.  相似文献   

15.
A theoretical quantum chemical study of the intramolecular hydrogen bonding interactions in 8-mercaptoquinoline has been carried out. Special attention has been paid to the rotation of S-H bond and intramolecular proton-transfer reactions. Therewith, the B3LYP/6-311++G(d,p), B3LYP/6-31+G(2d,2p), MPW1K/6-311++G(d,p), MPW1K/6-31+G(2d,2p), BH&HLYP/6-311++G(d,p), and G96LYP/6-311++G(d,p) methods have been used. By means of the Onsager and PCM reaction field methods, the effects of solvent on hydrogen-bond energies, conformational equilibria, rotational barriers, and tautomerism in aqueous solution have been studied. These simulations were done at the MPW1K/6-311++G(d,p) and B3LYP/6-311++G(d,p) levels. Natural-bond orbital analysis has been performed to study the intramolecular hydrogen bond (IHB) in the gaseous phase and in aqueous medium. The stability of forms under consideration in solution does not coincide with that in the gaseous phase, underlining a great importance of the electrostatic influence of solvent. Double-proton transfer in the prototropic tautomerization of 8-mercaptoquinoline, one water molecule complex in the gaseous phase and in solution, has been systematically studied. The double-proton transfer occurs concertedly and synchronously. The water-assisted tautomerization is kinetically less, but thermodynamically more favorable, compared to that of the single-proton transfer. As in the case with single-proton transfer, for water-assisted reaction, the tautomerization energies and barrier heights decrease with the increase in dielectric constant, which implies faster and more complete tautomerization of 8-mercaptoquinoline in a polar solvent.  相似文献   

16.
The solvation of Cu+ by methanol (MeOH) was studied via examination of the kinetic energy dependence of the collision-induced dissociation of Cu+(MeOH)x complexes, where x = 1-6, with Xe in a guided ion beam tandem mass spectrometer. In all cases, the primary and lowest-energy dissociation channel observed is the endothermic loss of a single MeOH molecule. The primary cross section thresholds are interpreted to yield 0 and 298 K bond dissociation energies (BDEs) after accounting for the effects of multiple ion-neutral collisions, kinetic and internal energy distributions of the reactants, and lifetimes for dissociation. Density functional theory calculations at the B3LYP/6-31G* level are performed to obtain model structures, vibrational frequencies, and rotational constants for the Cu+(MeOH)x complexes and their dissociation products. The relative stabilities of various conformations and theoretical BDEs are determined from single-point energy calculations at the B3LYP/6-311+G(2d,2p) level of theory using B3LYP/6-31G*-optimized geometries. The relative stabilities of the various conformations of the Cu+(MeOH)x complexes and the trends in the sequential BDEs are explained in terms of stabilization gained from sd hybridization, hydrogen-bonding interactions, electron donor-acceptor natural bond orbital stabilizing interactions, and destabilization arising from ligand-ligand repulsion.  相似文献   

17.
Dopamine (DA) can be oxidized to dopamine quinone (DAquinone) through a one-step, two-electron redox reaction. The electron transfer property of DA and its supramolecular complex with aspartic acid (Asp) has been investigated by the theoretical calculations. We calculated the standard redox potentials (E o) of DA/DAquinone at the MP2/6-31G(d,p)//B3LYP/6-31G(d,p), MP2/6-31+G(d,p)//B3LYP/6-31+G(d,p), MP2/6-31G(d,p)//B3LYP/6-311G(d,p), and MP2/6-311+G(d,p)//B3LYP/6-311+G(d,p) levels. Comparing the experimental value, the redox potentials of DA/DAquinone obtained at MP2//B3LYP/6-311G(d,p) and MP2//B3LYP/6-311+G(d,p) levels can be considered as the upper and lower estimates. DA can form supramolecular complex (DA-Asp) with Asp through hydrogen bond (H-bond). Therefore, the values of 0.631 and 0.628 V obtained at MP2//B3LYP/6-311G(d,p) and MP2//B3LYP/6-311+G(d,p) levels for DA-Asp/DAquinone-Asp can be proposed as the upper and lower estimates of a probable (about 0.630 V) value of the corresponding redox potential. The calculated E o values of DA-Asp/DAquinone-Asp at the four theoretical levels are upper than those of DA/DAquinone, which indicates that the formation of H-bonds weaken the electron-donating ability of DA.  相似文献   

18.
The search for possible conformations of 2-formylpyridine (H2FoPyS), 3-formylpyridine (H3FoPyS), and 4-formylpyridine (H4FoPyS) semicarbazones was carried out using potential energy surface method at the B3LYP/6-31G(d) level of theory. Thermodynamic quantities of amino-imino tautomerizations of the most stable conformers for H2FoPyS (o-Atctcc), H3FoPyS (m-Acttcc), and H4FoPyS (p-Atttcc) determined via the transition states with and without water-assisted proton transfers, derived from the frequencies calculations at the B3LYP/6-311++G(d,p) level in gas and aqueous phases are reported.  相似文献   

19.
The current work is a study of the conformational space of the non-ionic N-formylmethionine molecule around its seven structurally significant internal backbone torsional angles at B3LYP/6-31++G(d,p) levels of theory in the gaseous phase. The potential energy surface exploration reveals that a total of 432 different conformers would result if all the possible combinations of the internal rotations were to be considered. A set of twelve conformers of the N-formylmethionine molecule are then further analysed in terms of their relative stabilities, theoretically predicted harmonic vibrational frequencies, HOMO-LUMO energy gaps, ESP charges, rotational constants and dipole moments calculated using MP2/6-31++G(d,p) and B3LYP/6-311++G(d,p) levels. The calculated relative energy-range of the conformers at the MP2 level is 11.08 kcal mol?1 (1 kcal = 4.1868 kJ), whereas the same obtained at the B3LYP level is 10.02 kcal mol?1. The results of this study provide a good account of the role of four types of intramolecular H-bonds, namely O…H—O, O…H—N, O…H—C and N…H—C, in influencing the energies of the conformers as well as their conformational and vibrational spectroscopic aspects. The relative stability order of the conformers appears to depend on the level of theory used while the vibrational frequencies calculated at the B3LYP level are in better agreement with the experimental values.  相似文献   

20.
Conformational behaviors of urea and glycinamide have been investigated using the B3LYP functional with the 6-311+G* and 6-311+G** basis sets. Urea monomers have nonplanar minima at all the levels studied, even in the aqueous phase. In the case of glycinamide, the intramolecular hydrogen bond formed from the amide to the amine is important for stabilizing the global minimum. Bond rotations and nitrogen inversion barriers for glycinamide conformations have also been reported. The DFT calculated results suggest that urea conformers interact preferentially with the {111} surface of sodium chloride and such interactions can be responsible for the change in the habit of sodium chloride. Glycinamide conformers have a lower affinity toward the {111} surface of sodium chloride in water. The pyramidality of nitrogens in urea conformers does not influence the relative trends of interaction energies with sodium chloride surfaces. The mode of interactions predicted at the LDA/PWC/DND level for urea and glycinamide with sodium chloride for both slab and cluster models shows that the amide functionality (-CONH2) interacts with both Na(+) and Cl(-) ions on the {100} surface; however, the carbonyl oxygen of these additives predominantly interacts with the sodium ions on the {111} surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号