首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The use of effective core potentials in the calculation of the geometrical parameters of the ferrocene molecule and its heavier analogs is reported. It is shown that a critical factor in these calculations is the efective core–core (ECC ) potential and, in the absence of ECC s for first-row atoms that are involved in short bonds, calculations of the geometrical parameters are not reliable. Good agreement with experimental geometries may be obtained by using the Los Alamos ECP s for atoms of the second and higher rows of the periodic table at the MP 2 level. DFT calculations have been performed and found to give numerical results comparable to MP 2 in the same basis. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
In the crystal structures of the minerals edoylerite, deanesmithite, and wattersite and in the structures of the compounds HgCrO4, Hg3O2CrO4 (analog of the mineral schuetteite), and Pb2HgO2CrO4, there are atomic groups or fragments linked by relatively strong (covalent) bonds. The anion fragments represented by CrO4 tetrahedra are condensed into pairs and chains, in which adjacent tetrahedra are related by symmetry centers. The cation fragments form various patterns from zigzag ribbons of [Hg4S4] rings to ribbons and frameworks with [Hg6O2] r-octahedra, [Hg2CrO] and [Pb2HgO] triangles, and [Hg6Cr2O4] (stella quadrangula) groups. The symmetry of the fragments and their assemblies is analyzed. Analysis of the reference crystal-forming planes has revealed cation sublattices (close to the F-cubic sublattice in two cases), determining the typical features of the structures.Original Russian Text Copyright © 2004 by S. V. Borisov, S. A. Magarill, and N. V. PervukhinaTranslated from Zhurnal Strukturnoi Khimii, Vol. 45, No. 3, pp. 471–479, May–June, 2004.  相似文献   

3.
We report the first quantum mechanical calculations of p-tert-butylcalix[4]arene inclusion complexes in the crystalline state with geometrical aspects demonstrating good agreement with experiment, while comparison of the configurations calculated for an isolated complex and in the crystal, illustrate that crystal packing forces contribute to the observed structure of the host-guest assembly.  相似文献   

4.
Novel crystallographic D3-symmetric binuclear triple molecular helices [Co2L(1)3][BF4]4 (1), [Zn2L(1)3][BF4]4 (2), [Mn2L(1)3][BF4]4 (3), [Co2L(2)3][BF4]4 (4), [Zn2L(2)3][BF4]4 (5), and [Mn2L(2)3][BF4]4 (6) have been achieved to establish the side chain effect on molecular packing, where L1 is [(C5H4N)C(CH3)=N-(C6H4)-]2CH2 and L2 is [(C5H4N)C(CH3)=N-(C6H4)-]2O, respectively. Crystal structure analyses show that each helix crystallizes in a hexagonal crystal system with space group Pc1 and the general axis of the helix occupies the crystallographic 3-fold axial position with the other three crystallographic 2-fold symmetries perpendicular to it. Each metal center is bound to three pyridylimine units to attain C3 pseudooctahedral coordination geometry with respective equivalent metal-N (CH=N) and metal-N (pyridyl) bonds. It is speculated that the existence of the methyl group might minimize the potential intermolecular interactions, which would be the essential factor controlling the helices formed in idealized crystallographic D3 symmetry. Moreover, crystallographic idealized C3-symmetric helicates [Co2L(3)3][BF4]4 (7), [Zn2L(3)3][BF4]4 (8), [Ni2L(3)3][BF4]4 (9), and [Cu2L(3)3][BF4]4 (10) were also structurally characterized for comparison, where L3 is [(C5H4N)C(CH3)=N-]2. All the results indicate that the existence of the methyl group in the side chain of aromatic ligands could effectively reduce the potential - intermolecular interactions and the side chain effect of the methyl group in crystal packing is robust enough to be exchanged from one network structure to another, which ensures the generality and predictability of the crystallographic idealized symmetry formation to a certain extent.  相似文献   

5.
X-ray crystal structures are reported for five silver(I) complexes of four monoterpenoid alkenes. Discrete mononuclear complexes of the chiral alkenes (1S)-(−)-α-pinene and (1S)-(−)-β-pinene with silver perchlorate and silver hexafluorophosphate are described. The achiral diene γ-terpinene forms a discrete mononuclear adduct with silver hexafluorophosphate and a two-dimensional polymeric network structure with silver triflate. The chiral diene (R)-(+)-limonene forms a one-dimensional chiral coordination polymer with silver hexafluorophosphate. In all structures the silver atom is η2-bonded to the carbon-carbon bond(s) of the monoterpene with slightly longer bond distances to the more substituted carbon of the alkene moiety.  相似文献   

6.
The photoinduced postpolymerization of styrene and methyl methacrylate in the presence of metallocenes is studied. It is shown that, after short-term UV irradiation, the polymerization of vinyl monomers mediated by metallocenes continues in the dark regime until the formation of polymer glasses. The process proceeds as a terminationless complex-radical polymerization.  相似文献   

7.
The assumption of a gapless packing structure has previously been used to obtain the density and partial coordination numbers of a random mixture of hard spheres in the maximally dense regime. Here we extend the notion of a gapless packing structure to allow the determination of the characteristics of a packing away from maximal density by adding an appropriate number of void spherical elements. A gapless packing is then considered in which the void and solid spherical elements are assumed to be indistinguishable except for the purposes of calculating packing fraction and coordination number. We utilize the notion of specific volume to generate a one-parameter family of void distributions to obtain a set of coupled integral equations, which are solved numerically. Monodisperse and bi-disperse packings are investigated for packing fractions ranging from rho=0.26 to 0.78. Results are shown to be comparable to experiments and the effect of varying packing fraction on coordination numbers is shown to be invariant with respect to number distribution. A linear relationship between coordination number and packing fraction is elucidated for moderate to low packing fractions. Maximum and minimum random packing fractions are also discussed.  相似文献   

8.
The quadrupolar Carr-Purcell Meiboom-Gill (QCPMG) and double frequency sweep (DFS)/QCPMG pulse sequences are applied in order to acquire the first solid-state 39K NMR spectra of organometallic complexes, the polymeric main group metallocenes cyclopentadienyl potassium (CpK) and pentamethylcyclopentadienyl potassium (Cp*K). Piecewise QCPMG NMR techniques are used to acquire a high S/N 39K spectrum of the broad central transition of Cp*K, which is ca. 200 kHz in breadth. Analytical and numerical simulations indicate that there is a significant quadrupolar interaction present at both potassium nuclei (C(Q)(39K) = 2.55(6)/2.67(8) MHz and 4.69(8) MHz for CpK (static/MAS) and Cp*K, respectively). Experimental quadrupolar asymmetry parameters suggest that both structures are bent about the potassium atoms (eta(Q)(39K) = 0.28(3)/0.29(3) for CpK (static/MAS) and eta(Q)(39K) = 0.30(3) for Cp*K). Variable-temperature (VT) 39K NMR experiments on CpK elucidate temperature-dependent changes in quadrupolar parameters which can be rationalized in terms of alterations of bond distances and angles with temperature. 13C CP/MAS NMR experiments are conducted upon both samples to quantify the carbon chemical shielding anisotropy (CSA) at the Cp' ring carbon atoms. Ab initio carbon CSA and 39K electric-field gradient (EFG) and CSA calculations are conducted and discussed for the CpK complex, in order to correlate the experimental NMR parameters with molecular structure in CpK and Cp*K. 39K DFS/QCPMG and 13C CP/MAS experiments prove invaluable for probing molecular structure, temperature-dependent structural changes, and the presence of impurities in these systems.  相似文献   

9.
The dependence of the first coordination number k n on the packing factor k y is obtained for four cubic structures: fcc, bcc, simple cubic, and diamond. The k n (k y ) dependence is described by a third-degree polynomial k n = ?71.76782 + 467.78914 k y ? 925.48451 k y 2 + 603.01146 k y 3 with the confidence factor R d = 1. The k n (k y ) function has an N loop with a maximum at k n = 6.32; k y = 0.454 and a minimum at k n = 5.84; k y = 0.573. The tangents intersect the k n (k y ) curve at extrema at k y = 0.4 and k y = 0.625. Around the N loop, i.e., at 5.84 ≤ k n ≤ 6.32 and 0.4 ≤ k y ≤ 0.625, two or three packing factors correspond to a certain value of the coordination number. Therefore, this range of the k n and k y values can be defined as a “random packing” region. Estimations presented here agree well with the results of calculations, both geometric and numerical. For monoatomic solids with the random packing parameters, the difference between the specific volumes of the solid and liquid phases is insignificant. The dilatancy effect is possible in the region where ?k n / ?k y ≤ 0.  相似文献   

10.
A new, conceptually simple model of crystal packing is proposed which uses "packing patterns" to describe unit cells in terms of molecular building blocks.  相似文献   

11.

We have investigated possible relationships between four crystal properties: experimental densities and computed intrinsic molecular volumes, packing coefficients and amounts of free space per molecule in the crystal lattices. Our focus was upon C-, H-, N-, O-containing explosive compounds. The objectives were to gain some insight into how densities might be increased, to improve detonation performance, and the amounts of free space per molecule decreased, to counter one of the factors promoting undesired sensitivity to accidental stimuli. The issue of molecular planarity was also examined. The best correlation found between the four properties is perhaps a surprising one: The free space per molecule increases as the molecules are bigger. On the other hand, some relationships that seem to be intuitively reasonable turn out to be quite weak. The principal positive conclusions are that it is desirable for explosive compounds to be composed of molecules that are small and preferably planar.

  相似文献   

12.
Syntheses, crystal structures, and polymerization data for new isospecific metallocenes (heterocenes) having cyclopentenyl ligands b-fused to substituted thiophenes (Tp) and pyrroles (Pyr) are reported. The C2- and C1-symmetric heterocenes are dimethylsilyl bridged, have methyl groups adjacent to the bridgehead carbon atoms, and have aryl substituents protruding in the front. rac-Me2Si(2,5-Me2-3-Ph-6-Cp[b]Tp)2ZrCl2/MAO (MAO = methyl alumoxanes) is the most active metallocene catalyst for polypropylene reported to date. rac-Me2Si(2,5-Me2-3-Ph-6-Cp[b]Tp)2ZrCl2 and rac-Me2Si(2,5-Me2-1-Ph-4-Cp[b]Pyr)2ZrCl2 have the same structure, and the former is 6 times more active, produces half the total enantiofacial errors, and is 3.5 times less regiospecific in propylene polymerizations at the same conditions. rac-Me2Si(2-Me-4-Ph-1-Ind)2ZrCl2/MAO is 3.5 times lower in activity than rac-Me2Si(2,5-Me2-3-Ph-6-Cp[b]Tp)2ZrCl2 catalyst, and while the former is the more stereospecific and the less regiospecific, the sum of these two enantioface errors is the same for both species. Fine-tuning the heterocene sterics by changing selected hydrogen atoms on the ligands to methyl groups influenced their catalyst activities, stereospecificites, regiospecificites, and isotactic polypropylene (IPP) Mw. Thus, both substituting a hydrogen atom adjacent to the phenyl ring with a methyl group on an azapentalenyl ligand system and replacing one and then two hydrogens on the phenyl ring with methyls on thiopentalenyl ligands provided increased polymer Tm and Mw with increasing ligand bulk. Polymer molecular weights are sensitive to and inversely proportional to MAO concentration, and the catalyst activities increase when hydrogen is added for molecular weight control. The polymer Tm values with the thiopentalenyls as TIBAL/[Ph3C][B(C6F5)4] systems were higher than with MAO as catalyst activator. A racemic C1, pseudo-meso complex with a hybrid dimethylsilyl-bridged 2-Me-4-Ph-1-Ind/2,5-Me2-4-Ph-1-Cp[b]Pyr ligand produced the first sample of IPP with all the steric pentad intensities fitting the enantiomorphic site control model. Speculative mechanistic considerations are offered regarding electronic effects of the heteroatoms and steric effects of the ligand structures, the preferred phenyl torsion angles, and anion effects.  相似文献   

13.
Four distinct hydrogen‐bonding topologies were observed in the structures of six diethanolamine ligands. These compounds are (1R*,2R*)‐2‐[(2‐hydroxyethyl)(methyl)amino]‐1,2‐diphenylethanol, C17H21NO2, (I), 1‐[(2S)‐2‐(hydroxydiphenylmethyl)pyrrolidin‐1‐yl]‐2‐methylpropan‐2‐ol, C21H27NO2, (II), 2‐[(2‐hydroxyethyl)(methyl)amino]‐1,1‐diphenylethanol, C17H21NO2, (III), 1‐{(2‐hydroxy‐2‐methylpropyl)[(1S)‐1‐phenylethyl]amino}‐2‐methylpropan‐2‐ol, C16H27NO2, (IV), 1‐{[(2R)‐2‐hydroxy‐2‐phenylethyl][(1S)‐1‐phenylethyl]amino}‐2‐methylpropan‐2‐ol, C20H27NO2, (V), and (1R*,2S*)‐2‐[(2‐hydroxyethyl)(methyl)amino]‐1,2‐diphenylethanol, C17H21NO2, (VI). In each compound, all `active' hydroxy H atoms are engaged in hydrogen bonding, but the N atoms are not involved in intermolecular hydrogen bonding. In the structures of (I), (II) and (IV)–(VI), molecules are linked into chains by intermolecular O—H...O interactions. These chains are organized in such a way as to hide the hydrophilic groups inside, and so the outer surfaces of the chains are hydrophobic. The structure of (VI) contains two distinct non‐equivalent systems of intermolecular O—H...O hydrogen bonds formed by disordered hydroxy H atoms.  相似文献   

14.
The crystal structures of (SP‐4‐4)‐[rac‐2‐(1‐aminoethyl)phenyl‐κ2C1,N]chlorido(pyridine‐κN)palladium(II), [Pd(C8H10N)Cl(C5H5N)], (I), (SP‐4‐4)‐[rac‐2‐(1‐aminoethyl)phenyl‐κ2C1,N]bromido(pyridine‐κN)palladium(II), [PdBr(C8H10N)(C5H5N)], (II), (SP‐4‐4)‐[rac‐2‐(1‐aminoethyl)‐5‐bromophenyl‐κ2C1,N]bromido(4‐methylpyridine‐κN)palladium(II), [PdBr(C8H9BrN)(C6H7N)], (III), and (SP‐4‐4)‐[rac‐2‐(1‐aminoethyl)‐5‐bromophenyl‐κ2C1,N]iodido(4‐methylpyridine‐κN)palladium(II), [Pd(C8H9BrN)I(C6H7N)], (IV), are reported. The latter is the first iodide complex in this class of compounds. All four complexes crystallize in the same space group, viz.I41/a, with very similar lattice parameters a and more flexible lattice parameters c. Their packing corresponds to that of their enantiomerically pure congeners, which crystallize in the t2 subgroup I41.  相似文献   

15.
Beta-unsubstituted meso partially free N-confused porphyrin, N-confused 5,20-diphenylporphyrin (NCDPP, 3), was synthesized in 7% yield by [3 + 1] condensation reaction followed by oxidation. The structures of the free base and its Ag(III) complex were elucidated by the single-crystal X-ray analyses. The Ag(III) complex was more planar than the free base and formed columnar structures stacking to each other with a 3.3 A distance in the crystal. [reaction: see text]  相似文献   

16.
Two alkaline earth–tetrazole compounds, namely catena‐poly[[[triaquamagnesium(II)]‐μ‐5,5′‐(azanediyl)ditetrazolato‐κ3N1,N1′:N5] hemi{bis[μ‐5,5′‐(azanediyl)ditetrazolato‐κ3N1,N1′:N2]bis[triaquamagnesium(II)]} monohydrate], {[Mg(C2HN9)(H2O)3][Mg2(C2HN9)2(H2O)6]0.5·H2O}n, (I), and bis[5‐(pyrazin‐2‐yl)tetrazolate] hexaaquamagnesium(II), (C5H3N6)[Mg(H2O)6], (II), have been prepared under hydrothermal conditions. Compound (I) is a mixed dimer–polymer based on magnesium ion centres and can be regarded as the first example of a magnesium–tetrazolate polymer in the crystalline form. The structure shows a complex three‐dimensional hydrogen‐bonded network that involves magnesium–tetrazolate dimers, solvent water molecules and one‐dimensional magnesium–tetrazolate polymeric chains. The intrinsic cohesion in the polymer chains is ensured by N—H...N hydrogen bonds, which form R22(7) rings, thus reinforcing the propagation of the polymer chain along the a axis. The crystal structure of magnesium tetrazole salt (II) reveals a mixed ribbon of hydrogen‐bonded rings, of types R22(7), R22(9) and R24(10), running along the c axis, which are linked by R24(16) rings, generating a 4,8‐c flu net.  相似文献   

17.
The crystal structures of 6‐aminothiocytosine (systematic name: 4,6‐diamino‐1,2‐dihydropyrimidine‐2‐thione, DAPMT, C4H6N4S), its hemihydrate (0.5H2O) and its dimethylformamide (DMF, C3H7NO) monosolvate were compared, and the influence of the type of solvent on the supramolecular motifs was analysed. In all three crystal structures, there are two symmetry‐independent molecules (A and B), and these molecules are connected by three relatively short and directional hydrogen bonds to form chains of alternating A and B molecules. A further organization of these chains is dependent on the nature of the solvent molecule. In the unsolvated form, two orientations of the neighbouring chains are observed, and similar motifs – but only one per structure – can be observed in the solvated structures. These two different motifs can be connected by two different kinds of contacts, i.e. either π–π (hemihydrate) or staple‐supported S…S (DMF). In the crystal structures, the O atoms of the solvent molecules are double acceptors of the same type of hydrogen bonds and bind the chains of DAPMT molecules into different motifs (dimeric or infinite chains). A Hirshfeld fingerprint analysis was used for visualization and additional interpretation of these results.  相似文献   

18.
19.
Three crystalline complexes of sodium perchlorate with different flexible double betaines [Na 2(L1)(ClO4)(H2O) n ](ClO4) n (1), [Na 3(L2)(ClO4)3(H2O)2 n ] (2), and [Na(L 3)(CH3OH)n]-(ClO4) n ·xnH2O (x=0.25) (3) [O2CCH2N+Me2–(CH2) n -N+Me2CH2CO2 ,n=2 L1;n=3 L2;n=4 L3] have been synthesized and characterized by single-crystal X-ray structure analysis. Complex (1) comprises tetranuclear sodium units consolidated by betaine and aqua ligands, which are bridged by half of the ClO4 anions to form layers matching the (200) planes, the remaining uncoordinated ClO4 anions being accommodated between adjacent layers. Complex (2) possesses a double-layer polymeric structure with the sodium atoms bridged by ligand oxygen atoms to form columns running parallel to thea axis, which are interconnected by double-betaine ligands lying parallel to theac plane. All of the ClO4 groups and water molecules are coordinated to the metal atoms. In complex (3) the chains composed of alternating eight-membered and four-membered metallocycles are cross-linked by the betaine ligands, which lie in the (020) and (01/1) families of planes, to yield a three-dimensional network. All of the ClO4 groups and water molcules fill the resulting infinite channels running parallel to thea axis. Two unusual carboxylate coordination modes are identified, namely 3-O andhapto-3-O plushapto-2-O in (1) and (2), respectively.  相似文献   

20.
Electron transporting (n-channel) polymer semiconductors for field-effect transistors are rare. In this investigation, the synthesis and characterization of new electron-depleted N-alkyl-2,2'-bithiophene-3,3'-dicarboximide-based pi-conjugated homopolymers and copolymers containing the 2,2'-bithiophene unit are reported. A novel design approach is employed using computational modeling to identify favorable monomer properties such as core planarity, solubilizing substituent tailorability, and appropriate electron affinity with gratifying results. Monomeric model compounds are synthesized to confirm these properties, and a crystal structure reveals a short 3.43 A pi-pi stacking distance with favorable solubilizing substituent orientations. A family of 10 homopolymers and bithiophene copolymers is then synthesized via Yamamoto and Stille polymerizations, respectively. Two of these polymers are processable in common organic solvents: the homopolymer poly(N-(2-octyldodecyl)-2,2'-bithiophene-3,3'-dicarboximide) (P1) exhibits n-channel FET activity, and the copolymer poly(N-(2-octyldodecyl)-2,2':5',2':5',2'-quaterthiophene-3,3'-dicarboximide) (P2) exhibits air-stable p-channel FET operation. After annealing, P1 films exhibit a very high degree of crystallinity and an electron mobility > 0.01 cm (2) V(-1) s(-1) with a current on-off ratio of 10 (7), which is remarkably independent of film-deposition conditions. Extraordinarily, P1 films also exhibit terracing in AFM images with a step height matching the X-ray diffraction d spacing, a rare phenomenon for polymeric organic semiconductors. Another fascinating property of these materials is the air-stable p-channel FET performance of annealed P2 films, which exhibit a hole mobility of approximately 0.01 cm(2) V(-1) s(-1) and a current on-off ratio of 10(7).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号