首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The liquid-liquid extraction of uranium(VI) from aqueous nitric acid with n-octyldecylsulfoxide (ODSO) in toluene has been studied over a wide range of conditions. The extracted species appears to be UO2(NO3)2·2ODSO. The extraction increased with increasing nitric acid concentration up to 2.0 mol/l and then decreased. Extraction also increased with increasing extractant concentration. The influence of temperature, salting-out agent concentration and complex anion concentration on the extraction equilibrium were also investigated, and the enthalpy of the extraction reaction was calculated.  相似文献   

2.
The extraction of uranium(VI) with bis(hexylsulfinyl)methane (BHxSM) from nitric acid aqueous solution has been investigated. It was found that the extraction increased with increasing nitric acid concentration up 8.5 mol/l and then decreased. Extraction distribution ratio also increased with the bis(hexylsulfinyl)methane concentration. The extraction species appear to be UO2(NO3)2 .2BHxSM. The influences of temperature, salting-out concentration and oxalate concentration on the extraction equilibrium were also investigated, and the enthalpy of the extraction reaction was obtained. The result shows that the reaction of uranium(VI) extraction with BHxSM is an exothermic one.  相似文献   

3.
The liquid-liquid extraction behavior of uranium(VI) from aqueous nitric acid with bis(octylsulfinyl)ethane (BOSE) in 1,1,2,2-tetrachloroethane has been studied over a wide range of conditions. The extracted species appears to be UO2(NO3)2·2BOSE. It was found that the extraction increases with increasing nitric acid concentration up to 7 mol/l and then decreased. Extraction also increases with increasing extractant concentration. The influence of temperature and salting-out agent concentration on the extraction equilibrium and stripping of uranium(VI) was also investigated and the enthalpy of the extraction reaction was obtained.  相似文献   

4.
The liquid-liquid extraction behavior of 2-ethylhexyltolylsulfoxide (EHTSO) towards uranium(VI) contained in nitric acid aqueous solution has been investigated. It was found that the extraction increases with increasing nitric acid concentration up to 5.0 mol/l and then decreases. Extraction also increases with increasing extractant concentration. The extracted species appears to be UO2(NO3)2 .2EHTSO. The influences of temperature, NH4NO3 and Na2C2O4 concentrations on the extraction equilibrium were also investigated and the thermodynamic functions of the extraction reaction were obtained.  相似文献   

5.
The kinetics and mechanism of uranium(VI) extraction from nitric acid solution by bis(octylsulfinyl)methane (BOSM) are studied with the method of stationary interface cell. The effects of temperature, extractant and nitric acid concentrations are discussed. The results showed that the extraction process is controlled by the following reaction: UO2(NO3)2 + BOSM(i)k1 k-1UO2(NO3)2BOSM(i). The variation of enthalpy associated with the extraction is -22.1±2.1 kJ/mol. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
The thermodynamic extraction of uranium(VI) with hexyloctylsulfoxide (HxOSO) has been studied. It was found that the distribution ratio increases with increasing nitric acid concentration up to 2.3 mol/l and then decreases. The distribution ratio also increases with increasing extractant concentration. The extracted species appears to be UO2(NO3)2 .2HxOSO. The influences of temperature, sodium nitrate and oxalate concentrations on the extraction were also investigated, and the thermodynamic functions of the extraction reaction were obtained.  相似文献   

7.
The i-butyldodecylsulfoxide (BDSO) was synthesized. The extraction of uranium(VI) has been carried out with BDSO in toluene from various HNO3 concentrations. It was found that the distribution ratio increases with increasing nitric acid concentration up to 3.0 mol/l and then decreases. The distribution ratios also increase with increasing extractant concentration. The extracted species appears to be UO2(NO3)2·2BDSO and the equilibrium constant value is 15.2. The influence of temperature, sodium nitrate and oxalate concentrations on the extraction was also investigated, and the thermodynamic functions of the extraction reaction were obtained.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

8.
The synergic extraction of uranium(VI) from nitric acid solution with petroleum sulfoxides (PSO) and tri-n-butyl phosphate (TBP) mixture has been studied. It has been found that maximum synergic extraction effect occurs if the molar ratio of PSO to TBP is two to three. The composition of the complex of synergic extraction is UO2(NO3)2·TBP·PSO. The formation constant of the complex isK PT=8.19. The effect of extractant concentration, nitric acid concentration, salting-out agent concentration and temperature on the extraction equilibrium of uranium(VI) was also studied.  相似文献   

9.
The liquid-liquid extraction behavior of plutonium(IV) from aqueous nitric acid media into n-dodecane by di(2-ethylhexyl)sulfoxide (DEHSO) was investigated over a wide range of conditions. Optimum-parameters such as the aqueous phase acidity, reagent and metal concentrations, etc., were established for efficient extraction-separation of tracer as well as macro levels of plutonium. It was found that the extraction increased with increasing nitric acid concentration up to 6M HNO3 and then decreased. Extraction also increased with increasing extractant concentration. After loading of the organic phase with 2 to 50 mg/ml of U(VI), extractability of Pu(IV) became considerably lower. Recovery of Pu(IV) from the organic phase was accomplished using dilute uranium(IV) nitrate as the strippant.  相似文献   

10.
The synergistic extraction of uranium(VI) from aqueous nitric acid solution with mixtures of bis(hexylsulfinyl)ethane (BHxSE) and petroleum sulfoxides (PSO) in 1,1,2,2-tetrachloroethane was studied. It has been found that the maximum synergistic extraction effect occurs when the molar ratio of PSO to BHxSE is close to 1. The composition of the complex of synergistic extraction was estimated as UO2(NO3)2 .BHxSE.PSO. The formation constant of the complex was equal to KBP = 4.23±0.03. The effects of extractant, nitric acid, salting-out agent, and complex anion concentrations and temperature on the extraction equilibrium of uranium(VI) were also studied.  相似文献   

11.
Batch and dynamic extractions of uranium(VI) in 10−3–10−2M concentrations in 3–4M nitric acid medium have been investigated using a commercially available phosphinic acid resin (Tulsion CH-96). The extraction of uranium(VI) has been studied as a function of time, batch factor (V/m), concentrations of nitric acid and uranium(VI) ion. Dual extraction mechanism unique to phosphinic acid resin has been established for the extraction of uranium(VI). Distribution coefficient (K d ) of uranium(VI) initially decreases with increasing concentration of nitric acid, reaches a minimum value at 1.3M, followed by increases in K d . A maximum K d value of ∼2000 ml/g was obtained at 5.0M nitric acid. Batch extraction data has been fitted into the linearized Langmuir adsorption isotherm. The performance of the resin under dynamic extraction conditions was assessed by following the breakthrough behavior of the system. Effect of flow rate, concentrations of nitric acid and uranium ion in the feed on the breakthrough behavior of the system was studied and the data was fitted using Thomas model.  相似文献   

12.
Solven extraction separation of americium(III) from dilute aqueous nitrate media into n-dodecane by bis(2-ethylhexyl)sulfoxide (BESO) has been investigated over a wide range of experimentgal conditioins. Very poor extractablity of Am(III), necessitated the use of calcium nitrate as the salting-out agent. Effects of certain variables such as acidity, extractant concentration, salting-out agent concentration, organic diluents on the metal extraction by BESO have been examined in detail. By increasing the concentration of BESO in organic phase or calcium nitrate in aqueous phase, nearly quantitative extraction of americium even from moderate acidity is accomplished. Slope analyses applied to Am(III) distribution experiments from acidic nitrate solutions indicate predominant formation of the risolvated organic phase complex, Am(NO3)3)·3BESO for which equilibrium constant is found to be, log Kx=1.99. Extraction behavior of Am(III) has also been evlauated in the presence of several water-miscible polar organic solvents to stuy their possible synergistic effects on its extraction. Extractability of americium increased 5 to 10-fold withi increasing conentration of some of these additives, with maximum enhancement being observed in the presence of acetone or acetonitrile. Recovery of BESO from loaded americium is easily obtained using dilute nitric acid as the strippant.  相似文献   

13.
Extraction of uranium(VI), thorium(IV) from nitric acid has been studied with N-octylcaprolactam and N-(2-ethyl)hexylcaprolactam. Distribution coefficients of U(VI), Th(IV) and HNO3 as a function of aqueous NHO3 concentration, extractant concentration and temperature have been studied. The compositions of extracted species, thermodynamic parameters of extraction have been evaluated. Third phase formation in extraction of U(VI) has been studied. Back extraction behavior of U(VI) and Th(IV) from the organic phase has also been tested. The results obtained are compared with those obtained by using TBP under the same experimental conditions.  相似文献   

14.
Summary A systematic study on the extraction of U(VI) from nitric acid medium by tri-n-butylphosphate (TBP) dissolved in a non-traditional diluent namely 1-butyl-3-methylimidazolium hexafluorophosphate (bmimPF6) ionic liquid (IL) is reported. The results are compared with those obtained using TBP/n-dodecane (DD). The distribution ratio for the extraction of U(VI) from nitric acid by 1.1M TBP/bmimPF6 increases with increasing nitric acid concentration. The U(VI) distribution ratios are comparable in the nitric acid concentration range of 0.01M to 4M, to the ratios measured using 1.1M TBP/DD. In contrast to the extraction behavior of TBP/DD, the D values continued to increase with the increase in the concentration of nitric acid above 4.0M. The stoichiometry of uranyl solvate extracted by 1.1M TBP/IL is similar to that of TBP/DD system, wherein two molecules of TBP are associated with one molecule of uranyl nitrate in the organic phase. Ionic liquid alone also extracts uranium from nitric acid, albeit to a small extent. The exothermic enthalpy accompanying the extraction of U(VI) in TBP/bmimPF6 decreases with increasing nitric acid and with TBP concentrations.  相似文献   

15.
Solvent extraction of plutonium(VI) from nitric acid (1 to 5M) into 20% and 30% TBP in dodecane saturated with uranium(VI) (0% to 80%) has been studied. For a particular nitric acid concentration, the distribution coefficient (K d ) is found to decrease with the increase in saturation of organic phase with uranium(VI). At a fixed organic phase the saturationK d increased with increase in nitric acid concentration, however, the magnitude of this increase inK d decreased with the increase in saturation.  相似文献   

16.
N,N,N',N'-Tetrabutyladipicamide (TBAA) was used for the extraction of nitric acid and uranyl(II) ion from nitric acid media into toluene. The effects of nitric acid, uranyl(II) ion, and extractant concentration, temperature and back extraction on the distribution coefficient of uranyl(II) ion have been studied. The main adduct of TBAA and HNO3 is TBAA·HNO3 in 1.0 mol/l nitric acid solution. The 1:2:2 complex of uranyl(II) ion, nitrate ion and TBAA as extracted species is further confirmed by IR spectra of the extraction of uranyl(II) ion with TBAA. The values of the thermodynamic parameters have also been calculated.  相似文献   

17.
Extraction behavior of U(VI) and Th(IV) from nitric acid medium is investigated using organo-phosphorous extractant, tri(butoxyethyl) phosphate in n-paraffin at room temperature (27 ± 1 °C). The effect of diluents, nitric acid concentration as well as extractant concentration on extraction of U(VI) and Th(IV) are evaluated. Extraction of U(VI) and Th(IV) from nitric acid medium proceeds via solvation mechanism. Slope analysis technique showed the formation of neutral complexes of the type of UO2(NO3)2·2TBEP and Th(NO3)4·3TBEP with U(VI) and Th(IV) respectively in the organic phase. The FTIR data showed shifting of P=O stretching frequency from 1,282 to 1,217 cm−1 indicating the strong complexation of P=O group with UO2 2+ ions in the organic phase. Effect of stripping agents, other metal ions and their separation with respect to U(VI) extraction has also been investigated.  相似文献   

18.
The solvent extraction of thorium(IV) (4.3·10–4M) from nitric acid solution by bis-2-(butoxyethyl ether) (butex or DBC) has been studied. It has been investigated as a function of nitric acid, extractant and metal ion concentration. The effect of equilibration time, diverse ions and salting-out agent on the extraction has also been examined. Among anions, fluoride, phosphate, oxalate and perchlorate have reduced the extraction. Cations such as Na(I), K(I), Ca(II), Zn(II), Al(III), Ti(IV), Zr(IV) except Sr(II) and Pb(II) do not interfere in the extraction. The extraction is enhanced upto 97% in three stages at 6M HNO3 having 2.94M NaNO3 as salting-out agent. The extraction is found to be independent of thorium concentration in the range studied (4.3·10–4–4.3·10–2M). The temperature (18–45°C) has an adverse effect on the extraction. A 1% solution of ammonium bifluoride is found to be a good stripping solution and recovery of thorium is >98%.  相似文献   

19.
N-dodecanoylpyrrolidine (DOPOD) was synthesized and used for the extraction of nitric acid and uranyl(VI) ions from nitric media in toluene. The effects of nitric acid concentration, extractant concentration, temperature, salting-out agent (LiNO3) have been studied. The main adduct of DOPOD and HNO3 is HNO3·DOPOD. The complex formation of uranyl(VI) ion, nitrate ion and DOPOD (UO2(NO3)2·2DOPOD) as extracted species are further confirmed by IR spectra and the values of thermodynamic parameters have also been calculated.  相似文献   

20.
The extraction behavior of U(VI) and Th(IV) with tri-isoamyl phosphate–kerosene (TiAP–KO) from nitric acid medium was investigated in detail using the batch extraction method as a function of aqueous-phase acidity, TiAP concentration and temperature, then the thermodynamic parameters associated with the extraction were derived by the second-law method. It could be noted that the distribution ratios of U(VI) or Th(IV) increased with increasing HNO3 concentration until 6 or 5 M from 0.1 M. However, a good separation factor (D U(VI)/D Th(IV)) of 88.25 was achieved at 6 M HNO3, and the stripping of U(VI) from TiAP–KO with deionized water or diluted nitric acid was easier than that of Th(IV). The probable extracted species were deduced by log D-log c plot at different temperatures as UO2(NO3)2·(TiAP)(1–2) and Th(NO3)4·(TiAP)(2–3), respectively. Additionally, △H, △G and △S for the extraction of U(VI) and Th(IV) revealed that the extraction of U(VI) by TiAP was an exothermic process and was counteracted by entropy change, while the extraction of Th(IV) was an endothermic process and was driven by entropy change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号