首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Weizmann Y  Patolsky F  Willner I 《The Analyst》2001,126(9):1502-1504
A novel amplification route for DNA detection based on the deposition of gold on a 10 nm Au-colloid/avidin conjugate label acting as a 'seeding' catalyst, is described. Microgravimetric quartz-crystal-microbalance measurements are employed to transduce the catalyzed deposition of gold on the piezoelectric crystals. Three different DNA detection schemes are described: (i) analysis of a 27-base nucleic acid fragment; (ii) analysis of the entire M13phi DNA (7229 bases); and (iii) detection of a single-base mismatch in a DNA. Ultrasensitive detection of DNA is accomplished by the catalyzed deposition of gold, detection limit approximately 1 x 10(-15) M.  相似文献   

2.
This study demonstrates a highly sensitive sensing scheme for the detection of low concentrations of DNA, in principle down to the single biomolecule level. The previously developed technique of electrochemical current amplification for detection of single nanoparticle (NP) collisions at an ultramicroelectrode (UME) has been employed to determine DNA. The Pt NP/Au UME/hydrazine oxidation reaction was employed, and individual NP collision events were monitored. The Pt NP was modified with a 20-base oligonucleotide with a C6 spacer thiol (detection probe), and the Au UME was modified with a 16-base oligonucleotide with a C6 spacer thiol (capture probe). The presence of a target oligonucleotide (31 base) that hybridized with both capture and detection probes brought a Pt NP on the electrode surface, where the resulting electrochemical oxidation of hydrazine resulted in a current response.  相似文献   

3.
用电化学氧化法使玻碳电极表面氧化生成羧基,利用偶联活化试剂将1.0G树状高分子(PAMAM)固定在玻碳电极表面,并通过共价结合固定ssDNA。以亚甲基蓝为指示剂,采用循环伏安法、示差脉冲伏安法等电化学方法对DNA电化学生物传感器进行了表征。结果发现,通过亚甲基蓝与双链dsDNA作用的氧化还原电流的变化,可以识别和定量检测溶液中互补的ssDNA片段。经过条件优化,本法测定DNA的浓度线性范围为2×10-9~2×10-7mol/L,检出限为1×10-9mol/L。  相似文献   

4.
We describe adsorption and identification of the binding sites of [Ru(NH3)6]3+ (RuHex) molecules in a closely packed monolayer of a 13-base ss-DNA on Au(111) electrodes by electrochemical in situ scanning tunneling microscopy (STM), cyclic voltammetry and interfacial capacitance data. In situ STM at single-molecule resolution shows that RuHex adsorbs only at the domain borders and near defects. Together with the electrochemical data that show a negative redox potential shift for RuHex adsorbed to DNA strands, this strongly suggests that RuHex binds only to the exposed phosphate groups in the DNA backbone.  相似文献   

5.
A label-free biosensor for the detection of oligonucleotides related to hepatitis B virus sequence via the interactions of DNA with redox-active complex, 2,9-dimethyl-1,10-phenantroline cobalt [Co(dmp)(H2O)(NO3)2] is described. The study was carried out by the hybridization of 21-mer probe DNA modified on glassy carbon electrode (GCE) with target DNA, and [Co(dmp)(H2O)(NO3)2] whose sizes are comparable to those of the small groove of native double-helix DNA was used as an electrochemical indicator. Electrochemical detection was performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) over the potential range where the [Co(dmp)(H2O)(NO3)2] was active. Under the optimum conditions, the electrical signal had a linear relationship with the concentration of target DNA ranging from 3.96 x 10(-7) to 1.32 x 10(-6) M, and the detection limit was 1.94 x 10(-8) M (S/N=3). The biosensor has good selectivity by detecting the three-base mismatch sequence ssDNA.  相似文献   

6.
A non-enzymatic sensor was developed for the determination of glucose in alkaline medium by anodisation of copper in sodium potassium tartrate solution. The morphology of the modified copper electrode was studied by scanning electron microscopy, and its electrochemical behavior by cyclic voltammetry and electrochemical impedance spectroscopy. The electrode enables direct electrocatalytic oxidation of glucose on a CuO/Cu electrode at 0.7 V in 0.1 M sodium hydroxide. At this potential, the sensor is highly selective to glucose even in the presence of ascorbic acid, uric acid, or dopamine which are common interfering species. The sensor displays a sensitivity of 761.9 μA mM?1 cm?2, a linear detection range from 2 μM to 20 mM, a response time of <1 s, and a detection limit of 1 μM (S/N = 3). It was tested for determination of glucose level in blood serum.  相似文献   

7.
Derivatives of 2,5-diaminoterephthalate (DAT) are efficient fluorescence dyes that are also redox-active, thus allowing for the electrochemical manipulation of spectral properties. The electrochemical behaviour of seven DAT derivatives was studied by cyclic voltammetry in dichloromethane. In the absence of a proton donor, DATs should be oxidized in two one-electron steps. The first step is usually quasi-reversible while the second step is either quasi-reversible or irreversible. Some electrochemical properties such as the formal potentials and the ratio between the anodic and the cathodic current were determined from the cyclic voltammograms. Correlation between the formal potential of first oxidation and the absorption or the fluorescence emission wavelengths are established for this specific type of dyes. These correlations were confirmed with density functional theory calculations.  相似文献   

8.
《Electroanalysis》2006,18(1):26-34
The charge transport properties in composites consisting of pyrene sulfonic acid‐functionalized single‐walled carbon nanotubes embedded in polyaniline, PAn/SWCNTs, and polystyrene sulfonate‐doped PAn, PAn/PSS, are compared in thin‐film and microrods configurations. The PAn/SWCNTs and PAn/PSS microrods were prepared by the electropolymerization of the respective components in porous alumina membranes coated with a conductive gold support, followed by the dissolution of the membrane template. The charge transport upon the oxidation of the PAn/SWCNTs planar film or microrods structures is ca. 3.5–4.0‐fold faster than upon the oxidation of the PAn/PSS planar film or microrods structures, respectively. The faster charge transport in the PAn/SWCNTs films and microrods is used to enhance the mediated bioelectrocatalyzed oxidation of glucose in the presence of glucose oxidase (GOx). The bioelectrocatalyzed oxidation of glucose in the presence of the PAn/SWCNTs in the planar film and microrods structures is ca. 2‐fold and up to 6‐fold (depending on the potential) enhanced as compared to the respective PAn/PSS configurations.  相似文献   

9.
用电化学循环伏安法和计时电位法研究了葡萄糖在碳纳米管/纳米TiO2膜载Pt(CNT/nano-TiO2/Pt)复合电极上的电催化氧化,结果表明,在碱性介质中CNT/nano-TiO2/Pt复合电极对葡萄糖的电氧化具有高催化活性,葡萄糖氧化峰电流密度高达13mA/cm^2,比铂电极上的增大一倍;复合电极性能稳定,抗中毒能力强,不易发生氧化振荡,是葡萄糖燃料电池和葡萄糖传感器的高活性催化电极。  相似文献   

10.
《Electroanalysis》2017,29(6):1618-1625
An electrochemical sensor was developed based on gold nanoparticles incorporated in mesoporous MFI zeolite for the determination of purine bases. Au nanoparticles (AuNPs) were incorporated into the mesoporous MFI zeolite (AuNPs/m‐MFI) by post‐grafting reaction. The composite materials were characterized by transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS) and electrochemical methods. Au nanoparticles with a size of 5‐20 nm are uniformly dispersed in the pores of mesoporous MFI zeolite. And the morphology of MFI zeolite can be perfectly kept after pore expansion and Au nanoparticles incorporation. The electrocatalytic oxidation of purine bases (guanine and adenine in DNA) is investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The surface‐confined Au nanoparticles provide the good catalytic activity for oxidation of purine bases. The simultaneous detection of guanine and adenine can be achieved at AuNPs/m‐MFI composites modified glassy carbon electrode (GCE). The electrochemical sensor based on AuNPs/m‐MFI exhibits wide linear range of 0.5–500 μM and 0.8–500 μM with detection limit of 0.25 and 0.29 μM for guanine and adenine, respectively. Moreover, the electrochemical sensor is applied to evaluation of guanine and adenine in herring sperm DNA samples with satisfactory results.  相似文献   

11.
The electrochemical behavior of calcein (CA) has been investigated by using a conductive carbon black paste electrode (CCBPE) as working electrode. It exhibits a single well‐defined redox peak in phosphate buffered saline in the range of pH 5.5–8.0, which attributes to the irreversible oxidation with 2 electrons and 2 protons participation. Under the optimized analytical conditions, the proposed linear sweep voltammetry (LSV) method allows the determination of CA in a linear concentration range of 0.64–9.60 µM, with a limit of detection of 0.32 µM. Further, the interaction between CA and DNA were studied by voltammetric and spectrometric methods. Both studies have shown that CA can bind to DNA by the intercalation binding mode. Under the present experimental condition, the binding constant β of CA and dsDNA is 1.10×107. Meanwhile, in the loop‐mediated isothermal amplification (LAMP) reaction mixture there is obvious interaction between CA and dsDNA, resulting in a nonignorable decrease of the indicating sensitivity.  相似文献   

12.
The electrochemical oxidation of substituted mono-and 3,3′-biindolysines is studied by methods of cyclic voltammetry and electron spin resonance (ESR) combined with in situ electrolysis. In acetonitrile, there occurs easy irreversible electrochemical oxidation and proceed processes of association of generated radical cations via unsubstituted positions of five-membered cycles. Polymeric products of oxidation of 2-arylindolysines, 3-indolysine-2-yl-quinoxalines, and 2,2′-diaryl-3,3′-biindolysines are obtained when cycling potential in the interval ?0.3 V → +0.8 V → ?1.3 V → ?0.3 V (Fc/Fc+). The products deposit on the electrode with the formation of redox-active films that are capable of undergoing reversible oxidation with the formation of stable paramagnetic states registered by the ESR method.  相似文献   

13.
Six redox-active cyclophane/crown hybrid molecules (crownophanes) were prepared via cyclization reactions involving N,N′-dimethyl-p-phenylenediamine and tosylated oligoethylene glycols of varying length. These new host molecules differ from other phenylenediamine-containing crown ethers in that the electron-rich π face is designed to be part of the ligating group. Their electrochemical properties were determined by cyclic voltammetry with a correlation found between macrocyclic architecture and ease of oxidation. The affinity of the smaller crownophanes for cations was studied by cyclic voltammetry with the result that these hosts show no electrochemical response to alkali metal cations, but, dependent on macrocycle size, modest selectivity for alkaline earth metal cations. This stands in contrast to previously reported phenylenediamine-containing crown ethers in which the redox centers are linked to guest ions through a macrocyclic amino group.  相似文献   

14.
《Electroanalysis》2018,30(3):474-478
A non‐enzymatic electrochemical glucose sensor based on a Cu‐based metal‐organic framework (Cu‐MOF) modified electrode was developed. The Cu‐MOF was prepared by a simple ionothermal synthesis, and the characterizations of the Cu‐MOF were studied by Fourier transform infrared spectroscopy (FT‐IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), single‐crystal X‐ray powder diffraction (SCXRD), and X‐ray powder diffraction (XRD). Electrochemical behaviors of the Cu‐MOF modified electrode to glucose were measured by differential pulse voltammetry (DPV). The electrochemical results showed that the Cu‐MOF modified electrode exhibited an excellent electro‐catalytic oxidation towards glucose in the range of 0.06 μM to 5 mM with a sensitivity of 89 μA/mM cm2 and a detection limit of 10.5 nM. Moreover, the fabricated sensor showed a high selectivity to the oxidation of glucose in coexistence with other interferences. The sensor was satisfactorily applied to the determination of glucose in urine samples. With the significant electrochemical performances, MOFs may provide a suitable platform in the construction of kinds of electrochemical sensors and/or biosensors and hold a great promise for sensing applications.  相似文献   

15.
A nanoporous gold wire electrode (NPGWE) was prepared using a published one‐step method from a 0.3 M oxalic acid at room temperature. It was found in this study that the surface morphology, including the pore size and the width of the ligaments, and thus the surface roughness of the NPGWE could be easily manipulated by controlling the solution stirring rate. The NPGWE was used for the study of electrochemical oxidation and determination of glucose in 0.1 M NaOH using cyclic voltammetry. The effect of two potential interferences chloride ion and ascorbic acid was assessed. The electrode showed a linear range of glucose concentration from 0.5 mM to 10 mM with a detection limit of 8 μM.  相似文献   

16.
An electrochemical sensor for simultaneous determination of dopamine (DA), uric acid (UA), guanine (G), and adenine (A) has been constructed by copolymerizing melamine monomer and Ag ions on a glassy carbon electrode (GCE) with cyclic voltammetry. The poly-melamine and nano Ag formed a hybridized film on the surface of the GCE. The morphology of the film was characterized by scanning electron microscope. The electrochemical and electrocatalytic properties of this film were characterized by cyclic voltammetry, linear sweep voltammetry, and square wave voltammetry (SWV). In 0.1 M phosphate buffer solution (pH 4.5), the modified electrode resolved the electrochemical response of DA, UA, G, and A into four well-defined voltammetric oxidation peaks by SWV; the oxidation peak current of DA, UA, G, and A increased 13-, 6-, 7-, and 9-fold, respectively, compared with those at the bare GCE and the SWV peak currents of DA, UA, G, and A with linear concentrations in the ranges of 0.1–50, 0.1–50, 0.1–50, and 0.1–60 μM, respectively. Based on this, a method for simultaneous determination of these species in mixture was setup. The detection limits were 10 nM for DA, 100 nM for UA, 8 nM for G, and 8 nM for A.  相似文献   

17.
We report on the fabrication of an enzyme–free electrochemical sensor for glucose based on a printed film consisting of multi–walled carbon nanotubes (MWCNTs). The MWCNT–based film can be produced by means of a flexographic printing process on a polycarbonate (PC) substrate. The electrochemical response of the MWCNT–based film (referred to as MWCNT–PC) towards the oxidation of glucose at pH 7 was studied by means of cyclic voltammetry and electrochemical impedance spectroscopy. The MWCNT–PC film exhibits substantial electrocatalytic activity towards the oxidation of glucose at an anodic potential of 0.30?V (vs. Ag/AgCl). The findings reveal that the MWCNT–PC film enables non–enzymatic sensing of glucose with a detection limit as low as 2.16?μM and a sensitivity of 1045?μA?mM?1?cm?2.
Figure
Enzyme–free electrochemical sensor for glucose consisting of multi–walled carbon nanotubes was fabricated by means of flexographic printing process on polycarbonate substrate. The sensor exhibits electrocatalytic activity for glucose oxidation at an anodic potential of 0.30?V (vs. Ag/AgCl) with detection limit of 2.16?μM and sensitivity of 1045?μA?mM?1?cm?2.  相似文献   

18.
In this paper, nano‐gold modified carbon paste electrode (NGMCPE) was employed to develop an electrochemical DNA hybridization biosensor. The proposed sensor was made up by immobilization of 15‐mer single stranded oligonucleotide probe for detection of target DNA. Hybridization detection relies on the alternation in guanine oxidation signal following hybridization of the probe with complementary genomic DNA. The guanine oxidation was monitored using differential pulse voltammetry (DPV). Different factors such as activation potential, activation time and probe immobilization conditions were optimized. The selectivity of the sensor was investigated by non‐complementary oligonucleotides. Diagnostic performance of the biosensor was described and the detection limit was found 1.9 × 10?13 M at the NGMCPE surface. All of the investigations were performed in both CPE and NGMCPE and finally their results were compared.  相似文献   

19.
Titanium‐supported nanoscale flaky nickel electrode (nanoNi/Ti) was prepared by a hydrothermal process using hydrazine hydrate as a reduction agent. Its electrocatalytic activity as an electrocatalyst for the electrooxidation of glucose was evaluated in alkaline solutions using cyclic voltammetry (CV), chronoamperometric responses (CA) and electrochemical impedance spectra (EIS). The nanoNi/Ti electrode exhibits significantly high current density of glucose oxidation. A high catalytic rate constant of 1.67×106 cm3 mol?1 s?1 was calculated from amperometric responses on the nanoNi/Ti electrode. Low charge transfer resistances on the nanoNi/Ti in 0.5 M NaOH containing various concentrations of glucose were obtained according to the analysis for EIS. Furthermore, amperometric data show a linear dependence of the current density for glucose oxidation upon glucose concentration in the range of 0.05–0.6 mM with a sensitivity of 7.32 mA cm?2 mM?1. A detection limit of 0.0012 mM (1.2 μM) M glucose was found. Results show that the prepared nanoNi/Ti electrode presents high electrocatalytic activity for glucose oxidation.  相似文献   

20.
A simple and highly sensitive electrochemical biosensor for microRNA (miRNA) detection was successfully developed by integrating a target‐assisted isothermal exponential amplification reaction (EXPAR) with enzyme‐amplified electrochemical readout. The binding of target miRNA with the immobilized linear DNA template generated a part duplex and triggered primer extension reaction to form a double‐stranded DNA. Then one of the DNA strands was cleaved by nicking endonuclease and extended again. The short fragments with the same sequence as the target miRNA except for the replacement of uridines and ribonucleotides with thymines and deoxyribonucleotides could be displaced and released. Hybridization of these released DNA fragments with other amplification templates and their extension on the templates led to target exponential amplification. Integrating with enzyme‐amplified electrochemical readout, the electrochemical signal decreases with the increasing target microRNA concentration. The method could detect miRNA down to 98.9 fM with a linear range from 100 fM to 10 nM. The fabrication and binding processes were characterized with cyclic voltammetry and electrochemical impedance spectroscopy. The specificity of the method allowed single‐nucleotide difference between miRNA family members to be discriminated. The established biosensor displayed excellent analytical performance toward miRNA detection and might present a powerful and convenient tool for biomedical research and clinic diagnostic application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号