首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Aryl perfluorooctanesulfonates (fluorous sulfonate) have been developed as triflates and nonaflates alternatives for Pd‐catalyzed coupling reactions to form C‐C, C‐N, C‐S, C‐H, and C‐CN bonds. They also serve as phase‐tags for fluorous solid‐phase extraction (F‐SPE) to facilitate product purifications. Other synthetic techniques such as microwave reactions and multicomponent reactions are combined with the fluorous linker strategy to further increase synthetic efficiency. The utility of fluorous sulfonate linkers in the synthesis of biologically interested library scaffolds is summarized in this short review article.  相似文献   

2.
[reaction: see text] A mixture of four stereoisomers whose configurations are encoded by fluorous silyl protecting groups has been prepared and converted over 22 steps to a mixture of protected dictyostatins. Demixing by fluorous HPLC followed by removal of the fluorous protecting groups (detagging) provides dictyostatin and three C6,C7 stereoisomers. Biological evaluation showed that the monoepimers of the natural product retained highly potent activity.  相似文献   

3.
Techniques of fluorous mixture synthesis have been used to make four candidate stereoisomers for the natural product lagunapyrone B. A quasiracemic mixture of vinyl iodides whose component configurations at C19-21 were encoded by fluorous silyl groups was fused to a central fragment by a Negishi coupling. A separate quasiracemic mixture of pyrone fragments whose component configurations at C6,7 were also encoded by fluorous silyl groups was synthesized and demixed. Stille coupling of the resulting pure quasienantiomers with the quasiracemic mixture provided two quasi-diastereomeric samples, which were demixed and detagged to provide all four lagunapyrone B stereoisomers. Lagunapyrone was assigned the 6R,7S,19S,20S,21R configuration by comparison of optical rotations.  相似文献   

4.
A general synthetic sequence involving simply prepared starting materials provides rapid access to diverse, novel tricyclic architectures inspired by pleuromutilin. SmII‐mediated radical cyclization cascades of dialdehydes, prepared using a new, one‐pot, copper‐catalyzed double organomagnesium addition to β‐chlorocyclohexenone, proceed with complete sequence selectivity and typically with high diastereocontrol to give analogues of the target core. Our expedient approach (ca. 7 steps) allows non‐traditional, de novo synthetic access to analogues of the important antibacterial that can′t be prepared from the natural product by semisynthesis.  相似文献   

5.
Adenosine analogues bearing either 5'-aziridine or 5'-N-mustard electrophiles are methyltransferase-dependent DNA alkylating agents. We present here a novel synthetic cofactor bearing a pendant 5'-amino acid N-mustard. Unlike previously studied synthetic cofactors, this material is very efficiently used by the natural product biosynthetic enzyme rebeccamycin methyltransferase (RebM) to generate a number of new rebeccamycin analogues. These data promote the notion that natural product methyltransferases can be used with non-natural cofactors to enhance the molecular diversity of natural product analogues for drug discovery. To our knowledge, this is the first documentation of a biological methyltransferase, other than DNA methyltransferases, that can exploit such synthetic cofactors.  相似文献   

6.
A stereoselective route for the total synthesis of anticancer marine natural product (+)-varitriol (1) is detailed herein. The impressive biological activity and interesting structural features of natural (+)-varitriol fuelled us to undertake the synthesis of some higher analogues (1a-j) of this molecule. The key features of the synthetic strategy include one-pot Wittig olefination followed by a highly diastereoselective oxa-Michael addition to assemble stereochemically pure tetrasubstituted THF moiety of the natural varitriol and olefin cross metathesis to couple the aromatic part with tetrasubstituted THF moiety. The total synthesis of title natural product is efficient with 21.8% overall yield for 9 linear steps from D-ribose and thus facilitates the more scaled-up practical route for the synthesis of 1 and its analogues as well. The synthetic (+)-varitriol (1) and its analogues were screened for their cytotoxicity. The present synthetic approach paves the way for preparation of numerous analogues of the title natural product for drug development.  相似文献   

7.
Vishal A. Mahajan 《Tetrahedron》2006,62(6):1258-1272
A short synthetic strategy for synthesis of lignan analogues involving 5-methylene-4-substituted-2(5H)-furanones as the key intermediates has been developed. Various lignans including the natural product solafuranone and analogues of dihydrotaiwanin C and deoxydehydropodophyllotoxin were synthesized in good yields.  相似文献   

8.
Hemiasterlin is an antimitotic marine natural product with reported sub-nanomolar potency against several cancer cell lines. Herein, we describe an expeditious total synthesis of hemiasterlin featuring a four-component Ugi reaction (Ugi-4CR) as the key step. The convergent synthetic strategy enabled rapid access to taltobulin (HTI-286), a similarly potent synthetic analogue. This short synthetic sequence enabled investigation of both hemiasterlin and taltobulin as cytotoxic payloads in antibody–drug conjugates (ADCs). These novel ADCs displayed sub-nanomolar cytotoxicity against HER2-expressing cancer cells, while showing no activity against antigen-negative cells. This study demonstrates an improved synthetic route to a highly valuable natural product, facilitating further investigation of hemiasterlin and its analogues as potential payloads in targeted therapeutics.  相似文献   

9.
The total syntheses of the antiinflammatory marine sponge metabolites (+)-cacospongionolide B and E are described. The pivotal steps in the synthetic route include a three-step sequence that couples the two main regions of the natural product, as well as generates the side chain dihydropyran ring. The activity of the synthetic analogues against bee venom phospholipase A2 suggests that the cacospongionolides have enantiospecific interactions with the enzyme that may be independent of the gamma-hydroxybutenolide moiety.  相似文献   

10.
The phorboxazoles are mixed non-ribosomal peptide synthase/polyketide synthase biosynthetic products that embody polyketide domains joined via two serine-derived oxazole moieties. Total syntheses of phorboxazole A and analogues have been developed that rely upon the convergent coupling of three fragments via biomimetically inspired de novo oxazole formation. First, the macrolide-containing domain of phorboxazole A was assembled from C3-C17 and C18-C30 building blocks via formation of the C16-C18 oxazole, followed by macrolide ring closure involving an intramolecular Still-Genarri olefination at C2-C3. Alternatively, a ring-closing metathesis process was optimized to deliver the natural product's (2Z)-acrylate with remarkable geometrical selectivity. The C31-C46 side-chain domain was then appended to the macrolide by a second serine amide-derived oxazole assembly. Minimal deprotection then afforded phorboxazole A. This generally effective strategy was then dramatically abbreviated by employing a total synthesis approach wherein both of the natural product's oxazole moieties were installed simultaneously. A key bis-amide precursor to the bis-oxazole was formed in a chemoselective one-pot, bis-amidation sequence without the use of amino or carboxyl protecting groups. Thereafter, both oxazoles were formed from the key C18 and C31 bis-N-(1-hydroxyalkan-2-yl)amide in a simultaneous fashion, involving oxidation-cyclodehydrations. This synthetic strategy provides a total synthesis of phorboxazole A in 18% yield over nine steps from C3-C17 and C18-C30 synthetic fragments. It illustrates the utility of a synthetic design to form a mixed non-ribosomal peptide synthase/polyketide synthase biosynthetic product based upon biomimetic oxazole formation initiated by amide bond formation to join synthetic building blocks.  相似文献   

11.
Solution-phase mixture synthesis has efficiency advantages and favorable reaction kinetics. Applications of this technique, however, have been discouraged by the difficulty in obtaining individual, pure final products by using conventional separation and identification processes. Introduced here is a new strategy for mixture synthesis that addresses the separation and identification problems. Members of a series of organic substrates are paired with a series of fluorous tags of different chain lengths. The tagged starting materials are then mixed and taken through a multistep reaction process. Fluorous chromatography is used to demix the tagged product mixtures on the basis of the fluorine content of the tags to provide the individual pure components of the mixture, which are detagged to release the final products. The utility of fluorous mixture synthesis is demonstrated by the preparation of a 560-membered library of analogues of the natural product mappicine. A seven-component mixture is carried through a four-step mixture synthesis (two one-pot and two parallel steps) to incorporate two additional points of diversity onto the tetracyclic core. Methods for analysis and purification of the intermediates are established for the quality control of the mixture synthesis.  相似文献   

12.
[STRUCTURE: SEE TEXT] The synthesis of a new fluorous protecting group, Froc, is described. This new fluorous tag has been used in peptide and carbohydrate synthesis by our group and readily allows us to fully characterize each product (NMR, MS) and monitor each synthetic step by TLC. Purification of the products is generally performed by standard fluorous solid-phase extraction techniques (e.g., F-SPE), but standard chromatographic purifications are also possible if required.  相似文献   

13.
Graeme D. McAllister 《Tetrahedron》2007,63(49):12123-12130
A concise route to the anti-tumour natural product (−)-varitriol, together with its novel isomer (−)-3′-epi-varitriol, is described using a Horner-Wadsworth-Emmons (HWE)/conjugate addition/Ramberg-Bäcklund sequence as the cornerstone. The flexibility of the synthetic route has been demonstrated by the preparation of novel varitriol analogues.  相似文献   

14.
A concise, scalable, six‐step (longest linear sequence) synthetic route to ovatodiolide scaffolds was developed for the first time. This protecting‐group‐free route features tandem ring‐opening metathesis/ring‐closing metathesis reactions to install the macrocycle‐fused butenolide ring and a tandem allylboration/lactonization to build the α‐methylene‐γ‐lactone. Our syntheses have enabled the determination of the hitherto unknown stereochemical configurations of this family of natural products. Preliminary tests of structure–activity relationships were conducted with four natural ovatodiolides and three analogues. Further assays indicated that the synthetic natural product isoovatodiolide can significantly decrease the population of hepatic cancer stem cells and reduce the tumorsphere‐forming capability of HepG2 cells.  相似文献   

15.
A concise, scalable, six‐step (longest linear sequence) synthetic route to ovatodiolide scaffolds was developed for the first time. This protecting‐group‐free route features tandem ring‐opening metathesis/ring‐closing metathesis reactions to install the macrocycle‐fused butenolide ring and a tandem allylboration/lactonization to build the α‐methylene‐γ‐lactone. Our syntheses have enabled the determination of the hitherto unknown stereochemical configurations of this family of natural products. Preliminary tests of structure–activity relationships were conducted with four natural ovatodiolides and three analogues. Further assays indicated that the synthetic natural product isoovatodiolide can significantly decrease the population of hepatic cancer stem cells and reduce the tumorsphere‐forming capability of HepG2 cells.  相似文献   

16.
Manzoni L  Castelli R 《Organic letters》2004,6(23):4195-4198
The synthesis of the trisaccharide Lewis a was performed using an anomeric fluorous silyl protective group. This methodology allowed us to fully characterize each product (NMR, MS) and monitor each synthetic step (TLC). Although the product purifications could be performed by fluorous-solid-phase extraction (F-SPE) technology, standard chromatography could be used to effect purification if necessary. Trichloroethoxy carbonyl (Troc) protection of the amino group of the glucosamine moiety was found essential to allow protecting group manipulation of the fluorous protected sugar.  相似文献   

17.
Incorporating enzymatic reactions into natural product synthesis can significantly improve synthetic efficiency and selectivity. In contrast to the increasing applications of biocatalytic functional-group interconversions, the use of enzymatic C−C bond formation reactions in natural product synthesis is underexplored. Herein, we report a concise and efficient approach for the synthesis of [7.7]paracyclophane natural products, a family of polyketides with diverse biological activities. By using enzymatic Friedel–Crafts alkylation, cylindrocyclophanes A and F and merocyclophanes A and D were synthesized in six to eight steps in the longest linear sequence. This study demonstrates the power of combining enzymatic reactions with contemporary synthetic methodologies and provides opportunities for the structure–activity relationship studies of [7.7]paracyclophane natural products.  相似文献   

18.
Asymmetric reduction of a mixture of four fluorous ketone analogues was carried out with (R)-oxazaborolidine as a catalyst. The fluorous mixture products were resolved by a reverse phase HPLC with chiral β-cyclodextrin column to result in good separation of the enantiomers.  相似文献   

19.
The first total synthesis of the antiinflammatory marine sponge metabolite (+)-cacospongionolide B has been accomplished in 12 linear steps. The pivotal transformations include a three-step sequence coupling the two main regions of the natural product as well as generating the side chain dihydropyran ring. The activity of the synthetic analogues against bee venom phospholipase A(2) suggests that cacospongionolide B has an enantiospecific interaction with the enzyme that is independent of the gamma-hydroxybutenolide moiety.  相似文献   

20.
The total synthesis and stereochemical assignment of the potent antitumor macrolide lobatamide C, as well as synthesis of simplified lobatamide analogues, is reported. Cu(I)-mediated enamide formation methodology has been developed to prepare the highly unsaturated enamide side chain of the natural product and analogues. A key fragment coupling employs base-mediated esterification of a beta-hydroxy acid and a salicylate cyanomethyl ester. Three additional stereoisomers of lobatamide C have been prepared using related synthetic routes. The stereochemistry at C8, C11, and C15 of lobatamide C was assigned by comparison of stereoisomers and X-ray analysis of a crystalline derivative. Synthetic lobatamide C, stereoisomers, and simplified analogues have been evaluated for inhibition of bovine chromaffin granule membrane V-ATPase. The salicylate phenol, enamide NH, and ortho-substitution of the salicylate ester have been shown to be important for V-ATPase inhibitory activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号