首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A stable triplet carbene, having a lifetime at 25 degrees C of 14.5 days in a dilute benzene solution, was realized by simply changing the substituent at the 10 position of the previously most persistent carbene, di[9-(10-phenyl)anthryl]carbene, from a phenyl to a 2,6-dimethyl-4-tert-butylphenyl group.  相似文献   

2.
The title carbene has been generated by photolysis of the corresponding diazo precursors and studied by spectroscopic means, i. e., electron paramagnetic resonance (EPR) and UV/vis spectroscopy in matrixes at low temperature and laser-flash photolysis in solution at room temperature, with the product analysis. The results are compared with triplet di(2,3,5,6-tetramethylphenyl)carbene, an open-chain counterpart, which revealed that bicycloalkyl groups are acting as a fairly good kinetic protector for the triplet carbene as opposed to the open-chain counterpart. The formation of all-hydrocarbon triplet carbenes having a half-life over a second under normal conditions was realized for the first time. Effects of para-substituents on the structure and reactivities of the carbene are also investigated and discussed in terms of polar and spin electronic effects.  相似文献   

3.
The geometries and relative stabilities of the singlet and triplet states of phenyl- (Cs), diphenyl- (C2), 1-naphthyl- (Cs), di(1-naphthyl)- (C2), and 9-anthryl-substituted (Cs) carbenes were investigated at the B3LYP/6-311+G(d,p) + ZPVE level of density functional theory. The singlet-triplet energy separations (DeltaEST), 2.7, 2.9, 3.4, 3.7, and 5.7 kcal/mol, respectively, after including an empirical correction (2.8 kcal/mol) based on the error in the computed singlet-triplet gap for methylene versus experiment, are in good agreement with available experimental values. Consistent with literature reports, triplet di(9-anthryl)carbene has a linear, D2d symmetrical, allene structure with 1.336 A C=C bond lengths and considerable biradical character. B3LYP favors such cumulene biradical structures and triplet spin states and predicts a large (>15 kcal/mol) "di(9-anthryl)carbene" singlet-triplet (biradical) energy gap. The resonance stabilization of both singlet and triplet carbenes increases modestly with the size of the arene substituent and overall, (di)arylcarbenes, both singlet and triplet, are better stabilized by bigger substituents. For example, methylene is stabilized more by a naphthyl than a phenyl group (singlets, 26.6 versus 24.4; and triplets, 20.9 versus 18.1 kcal/mol, respectively). The carbene geometries are affected by both steric effects and arene-carbene orbital interactions (sigma-p and p-pi). For instance, the central angles at the carbene are widened by a second arene group, which leads to increased s-character and shorter carbene bond lengths (i.e., C-C, C-H). In general, the aromaticity of the substituted rings in triplet carbenes is most affected by the presence of the unpaired electrons.  相似文献   

4.
5.
Among the most important of chemical intermediates are the carbenes, characterized by a divalent carbon that generates low-lying biradical (triplet) and spin-paired (singlet) configurations with unique chemical reactivities. The "holy grail" of carbene chemistry has been determining the singlet-triplet gap and intersystem crossing rates. We report here the first high resolution spectra of singlet-triplet transitions in a prototypical singlet carbene, CHCl, which probe in detail the triplet state structure and spin-orbit coupling with the ground singlet state. Our spectra reveal a pronounced vibrational state dependence of the triplet state spin-spin splitting parameter, which we show is a sensitive probe of spin-orbit coupling with nearby singlet states. The parameters derived from our spectra, including a precise determination of the singlet-triplet energy gap, are in excellent agreement with recent ab initio calculations.  相似文献   

6.
The influence of coordinating solvents on singlet-to-triplet carbene intersystem crossing (ISC) rates has been studied with diphenylcarbene (DPC) and para-biphenyltrifluoromethylcarbene (BpCCF 3) by using ultrafast time-resolved spectroscopy. DPC has a triplet ground state in all of the solvents considered, and the concentration of singlet carbene at equilibrium is too small to be measured. It is found that the lifetime of (1)DPC is extended in acetonitrile, benzene, tetrahydrofuran, dichloromethane, and halobenzene solvents relative to cyclohexane. The solvent effect does not well correlate with bulk measures of solvent polarity. The singlet-triplet energy separation of BpCCF 3 is close to zero. The data demonstrates that BpCCF 3 has a triplet ground state in benzene, fluorobenzene, and hexafluorobenzene. Halogenated solvents are found to dramatically retard the rate of ISC in (1)BpCCF 3. We postulate that the empty p orbital of a singlet carbene coordinates with a nonbonding pair of electrons of a halogen atom of the solvent to form a pseudoylide solvent complex, stabilize the singlet carbene, and decrease the singlet-triplet (S-T) energy gap. The "golden rule" of radiationless transitions posits that the smaller the energy gap between the two states, the faster their rate of interconversion. To explain the apparent violation of the golden rule of radiationless transitions for the carbene ISC processes monitored in this study, we propose that the significantly different specific solvation of the singlet and triplet carbenes imposes a Franck-Condon-like factor on the ISC process. Those solvents that most solvate the singlet carbene will also have the greatest structural difference between singlet carbene-solvent complex and their triplet spin isomer-solvent complex, the smallest S-T gap, and the slowest ISC rate. Alternatively, one can propose that a highly solvated singlet carbene must desolvate prior to ISC, and that this requirement decelerates the radiationless transition.  相似文献   

7.
The generation of 2-carbenabicyclo[3.2.1]octa-3,6-diene (1) results in the formation of C(8)H(8) hydrocarbons endo-6-ethynylbicyclo[3.1.0]hex-2-ene (4), semibullvalene (5), and 5-ethynyl-1,3-cyclohexadiene (6), and C(8)H(10) hydrocarbons bicyclo[3.2.1]octa-2,6-diene (7), tricyclo[3.2.1.0(4,6)]oct-2-ene (8), and tetracyclo[3.3.0.0(2,8)0(4,6)]octane (9). Focus is placed on three mechanistic pathways for the formation of the C(8)H(10) hydrocarbon fraction: (a) abstraction of hydrogen by triplet carbene 1T to produce an equilibrating set of monoradicals, (b) interconversion of triplet carbene 1T into tricyclic triplet diradical 19T and tetracyclic triplet diradical 20T, and (c) interconversion of singlet 1S with analogous singlet diradical 19S and 20S. Ab initio calculations at the (U)B3LYP/6-311+G(3df,2p)//(U)B3LYP/6-31G(d,p) and broken spin symmetry UBS B3LYP/6-311+G(3df,2p)//B3LYP/6-31G(d,p) levels rule out choices (a) and (b) and are consistent with the singlet diradical process.  相似文献   

8.
[structure: see text] To confirm whether high-spin species can be generated as a result of ferromagnetic interaction between the 3d spin of metal ions and the 2p spins of triplet carbene through the pyridyl group located remote from the carbene center, [2,6-dibromo-4-(3- and 4-pyridyl)phenyl](4-tert-butyl-2,6-dimethylphenyl)diazomethanes were prepared and the corresponding carbenes were generated either in the absence or presence of Cu(hfac)2. These were characterized by ESR and UV/vis in a matrix at low temperature, and by laser flash photolysis in solution at room temperature. These studies indicated that although both carbenes generated a fairly stable complex with copper ions, the 4-pyridyl isomer formed a high-spin species as a result of ferromagnetic interaction between the 3d spin of metal ions and the 2p spins of triplet carbene. Such an interaction in the corresponding 3-isomer is likely to be antiferromagnetic. This is further confirmed by magnetic measurements using a Superconducting Quantum Interference Device (SQUID). The results demonstrate that extension of this method will enable stable high-spin polycarbenes to be obtained.  相似文献   

9.
Photolysis of S,C-sulfonium ylides derived from thioanisol, thiophene, benzothiophene, or dibenzothiophene provides products deriving from dicarbomethoxycarbene. In methanol, no rearrangement of the carbene to the ketene derivative is observed. Formation of dibenzothiophene and benzothiophene is quantitative. For the thiophene-based ylide, insertion of the carbene into the alpha-CH bond of thiophene is observed. Evidence is presented that supports formation of both singlet and triplet carbene.  相似文献   

10.
A cascade of cyclization/cycloaddition reactions was triggered by addition of protic oxygen nucleophiles ROH 2 (RO = CH3CO2, PhCO2, PhO) to [2-(1-cyclohexenyl)ethynyl]carbene complexes 1b and 1c (M=W, Cr, respectively), affording highly strained "dimers" 11/11' and "trimers" 12 of the carbene ligand. The first reaction step involved the formation of 1-metalla1,3,5-hexatrienes 7, which readily gave tetrahydroindenes 8 by pi cyclization and extrusion of the metal unit. "Dimers" 11/11' were generated from tetrahydroindenes 8 by a highly exo selective [4+2] cycloaddition of compounds 1b and 1c to afford 1-metalla-1,3,5-hexatriene intermediates 9, and a spontaneous pi cyclization of the latter compounds involving the disengagement of the metal unit. Propenylidene cyclohexenes 13/13' were formed in "ene"-type side reactions to the pi cyclization of 1-metalla-1,3,5-hexatrienes 7, by loss of the metal unit. "Dimers" 11 were transformed into "trimers" 12 by a [4+2] cycloaddition and subsequent pi-cyclization of the resulting 1-metalla-1,3,5-hexatriene system. The course of the reaction was elucidated by means of model reactions with (2-phenylethynyl)carbene complex 14, in which 1-metalla-1,3,5-hexatriene intermediates 16 and 17 were isolated and characterized. Alkynyl benzene derivatives 19 were obtained by an unprecedented ring-expansion of a cyclopentadiene unit of "dimers" 11a and 11c, involving the insertion of a carbene carbon atom of compound 14 into a C=C bond. A reaction cascade leading to "dimers" 24/24' could also be triggered by treatment of compounds 2 with [2-(1-cycloheptenyl)ethynyl]carbene tungsten complex 1d.  相似文献   

11.
Persistent triplet diphenylcarbenes with considerable stability have been shown to be trapped by tetramethylpiperidine N-oxides (TEMPOs) to give the corresponding benzophenones as major products along with tetramethylpiperidine, which indicates that the reaction pattern is essentially identical with that observed for parent triplet diphenylcarbene. The absolute rate constants for the quenching reaction were measured by a laser flash photolysis technique and compared with those for quenching by other typical triplet carbene quenchers. The results showed that the reactivity of TEMPOs toward triplet carbenes was lower than that of oxygen but higher than that of 1,4-cyclohexadiene. The advantages of TEMPOs as a triplet carbene quencher as opposed to the other quenchers are discussed, and TEMPOs are shown to be very convenient reagents to estimate the reactivity of triplet carbenes.  相似文献   

12.
《Polyhedron》2003,22(14-17):2067-2076
Stable carbene:bis(9-(10-phenyl)anthryl)carbene and model carbenes of which have been investigated by ab initio MO and Crystal orbital calculations. By hybrid density-functional calculation (B3LYP/4-31G) the carbene has character as a triplet carbene than a triplet diradical. Based on calculations on this carbene, a polycarbene is contrived to investigate interactions of carbenes, which are stabilized by aromatic rings. They have interacted with each other in antiferromagnetic fashion by both B3LYP MO and Crystal orbital calculations. Their magnetic interactions have been varied as the conformational changes of the aromatic rings, which have been evaluated by the effective exchange integral J(AP) based on the Heisenberg Hamiltonian. To describe the behavior AO-approach has been introduced and has worked efficiently.  相似文献   

13.
Simple molybdenum methyl, carbene, and carbyne complexes, [CH3--MoF], [CH2=MoHF], and [CH[triple chemical bond]MoH(2)F], were formed by the reaction of laser-ablated molybdenum atoms with methyl fluoride and isolated in an argon matrix. These molecules provide a persistent photoreversible system through alpha-hydrogen migration between the carbon and metal atoms: The methyl and carbene complexes are produced by applying UV irradiation (240-380 nm) while the carbyne complex is depleted, and the process reverses on irradiation with visible light (lambda>420 nm). An absorption at 589.3 cm(-1) is attributed to the Mo--F stretching mode of [CH3--MoF], which is in fact the most stable of the plausible products. Density functional theory calculations show that one of the alpha-hydrogen atoms of the carbene complex is considerably bent toward the metal atom (angle-spherical HCMo=84.5 degrees ), which provides evidence of a strong agostic interaction in the triplet ground state. The calculated C[triple chemical bond]Mo bond length in the carbyne is in the range of triple-bond values in methylidyne complexes.  相似文献   

14.
Abstract— The photochemistry of 2,7-diiodo-9-diazofiuorene was studied to examine its suitability as a photolabeling agent of hydrophobic sites in biological assemblies. Irradiation of the diazo compound generates 2,7-diiodofluorenylidene. The carbene was detected by laser transient absorption spectroscopy and characterized by its chemical and physical properties. Like fluorenylidene, the triplet is the ground state of 2,7-diiodofluorenylidene. However, the substituted triplet carbene does not reform its higher energy, electrophilic singlet state fast enough for reactions of the upper state to compete with the irreversible consumption of the triplet. Thus, the products from the reactions of diiodofluorenylidene contain a higher proportion of those characteristic of the triplet carbene than occurs in the reactions of fluorenylidene. This will limit the utility of this diazocompound as a photolabeling agent.  相似文献   

15.
A comparison of the aromatic nature of the cations and carbenes centered at the 8-position of tricyclo[3.2.1.0(2,4)]octane, the 9-position of pentacyclo[4.3.0.0(2,4).0(3,8).0(5,7)]nonane, the 6-position of tricyclo[3.1.1.0(2,4)]heptane, and the 4-position of tetracyclo[3.3.0.0(2,8).0(3,6)]octane has been undertaken. Hybrid density functional theory calculations have been used to examine the geometric, energetic, and magnetic characteristics of each cation, singlet carbene, and triplet carbene. The results shed light on the flexibility of the polycycles to achieve stable intermediates and on the breadth of homoaromaticity.  相似文献   

16.
A series of polybrominated diphenylcarbenes (DPCs) are generated by irradiation of the corresponding precursor diazomethanes, and their reactivities are investigated by means of low-temperature spectroscopies as well as laser flash photolysis. Triplet bis(2,4,6-tribromophenyl)carbene was shown to decay by undergoing dimerization and to have a half-life of 1 s in a degassed benzene solution at room temperature, some 6 orders of magnitude longer-lived than the parent DPC. Anomalous effects of para substituents on the stability of the triplet are noted. Thus, while the replacement of a 4-bromine group with a methyl group resulted in a sharp decrease in the lifetime, introduction of a tert-butyl group resulted in a dramatic increase in the lifetime; triplet bis(2,6-dibromo-4-tert-butylphenyl)carbene was shown to have a half-life of 16 s in solution at room temperature. Attempts to increase the stability of these polybrominated DPCs by buttressing effects of a m-bromine group and by the synergetic effect of bromine and methyl groups are also described.  相似文献   

17.
通过对二苯基重氮甲烷进行光照射产生了一系列于邻位和对位具有不同大小取代基的三线态二苯基卡宾.用紫外可见光谱对其进行了直接观察,并利用激光闪光光解法测定了三线态二苯基卡宾在室温脱氧苯溶液中的寿命,由此表明在邻位和对位里引入庞大的取代基对三线态二苯基卡宾具有更好的稳定效应.  相似文献   

18.
To test the feasibility of the guanidinate architecture for the support of boron(i) carbene analogues the energy gap between the singlet and triplet states of the model compound, [Me(2)NC{N(Ph)}(2)B:] (), has been probed by both DFT and second order M?ller-Plesset (MP2) methods. The singlet state is calculated to be more stable than the triplet state by between 6.0 and 10.1 kcal mol(-1). The new (guanidinate)boron dichlorides [Ph(2)NC{N(Mes)(2)]BCl(2) () and [Ph(2)NC{N(Dipp)(2)]BCl(2) () have been prepared and characterized by single-crystal X-ray diffraction. Attempts to reduce and to the corresponding boron(i) species were not successful.  相似文献   

19.
The heavy dipnictenes (RE=ER, where E=P, As, Sb, and Bi with the substituent R) have essentially planar geometry and appreciable strength in pi-bonding, unlike related heavier main group 14 analogues of alkenes as concluded recently by Power. This work demonstrated that the protonated pnictenes behave more like the heavy carbene for their weak pi-bonding character from the computational study with the B3LYP/6-311++G** method. For example, although both phosphinidene (HP) and the phosphonium ion (H2P+) are isoelectronic to silylenes, the pi-bonding tendency of the former is rather strong and it forms a planar adduct with both the stable carbene and stable silylene ((HCNH)2E, where E=C and Si). In contrast, the latter forms trans-bent adducts with the two species. These results can be interpreted in terms of the Carter-Goddard-Malrieu-Trinquier (CGMT) model, and the fact that the value of DeltaEST [E(triplet)-E(singlet)] of the HP fragment increases significantly after protonation. All other heavy pnictenes resemble the phosphinidene. In contrast, nitrene (HN) and nitrenium (H2N+) have a ground triplet state, thus both have strong pi-bonding character similar to that of carbene.  相似文献   

20.
To realize fairly stable high-spin polycarbenes by utilizing heterospin systems comprising 2p spins of organic radicals and 3d spins of magnetic metal ions, we prepared dianthryldiazomethanes having two pyridyl groups at the 2,2'- or 2,7-positions, that is, bis[10-(4-tert-butyl-2,6-dimethylphenyl)-2-(4-pyridyl)-9-anthryl]diazomethane (2,2'-DPy-1-N(2)) and [10-(4-tert-butyl-2,6-dimethylphenyl)-9-anthryl][(10-(4-tert-butyl-2,6-dimethylphenyl)-2,7-di(4-pyridyl)-9-anthryl]diazomethane (2,7-DPy-1-N(2)). The triplet carbene DPy-(3)1 generated by photolysis of DPy-1-N(2) was characterized by ESR and UV-vis spectroscopy in a matrix at low temperature as well as by time-resolved UV-vis in solution at room temperature. The results showed that the triplet carbene DPy-(3)1 was destabilized to some extent as opposed to the parent triplet carbene before pyridination, but it was still fairly persistent, having a half-life of more than 30 min in solution at room temperature. Photoproducts from the complex between DPy-1-N(2) and Cu(hfac)(2) were characterized in a similar manner, and the results suggested that the generated carbene centers interacted magnetically with the Cu(II) ion to form a high-spin species with significant thermal stability. The fact that no significant signals due to the isolated triplet carbene DPy-(3)1 were observed suggested that the pyridine moiety binds with Cu(hfac)(2) in a nearly quantitative manner under these cryogenic conditions. Magnetic measurements of the photoproduct using a superconducting quantum interference device (SQUID) magneto/susceptometer were performed to determine the spin state of the complex. The temperature dependence of the molar paramagnetic susceptibility indicated the presence of ferromagnetic interaction. The field dependences of magnetization for the complexes, expressed using M versus H/T plots, were analyzed in terms of the two-component Brillouin function to be S = 3.18 (F = 0.66) and S = 0.02 (F = 0.23) for the 1:1 complex of 2,7-DPy-1 and Cu(hfac)(2) and S = 2.70 (F = 0.33) and S = 0.49 (F = 0.11) for the 1:1 complex of 2,2'-DPy-1 and Cu(hfac)(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号