首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A system for measuring the absolute frequency of a far-infrared (FIR) laser is described. Josephson point contacts have been utilized in the system as a frequency harmonic mixer connecting microwaves and optically pumped CH3OH laser lines. The Josephson point contacts are capable of generating beat signals of 90 GHz microwaves and FIR waves of up to 4.25 THz. To measure the frequency of the beat signals from the Josephson junction with a frequency counter, tracking oscillators have been developed, which tracks the beat signals by phase locking and regenerate clean signals for frequency counting. It is shown that the absolute frequency can be measured to an accuracy of about 100 Hz by using the tracking oscillators.  相似文献   

2.
s波超导体绝缘层dx2-y2波超导体结的直流Josephson电流   总被引:2,自引:0,他引:2       下载免费PDF全文
李晓薇  董正超  崔元顺 《物理学报》2002,51(6):1360-1365
在s波超导体绝缘层dx2-y2波超导体结(sId)中,考虑到结界面粗糙散射,运用BogoliubovdeGennes(BdG)方程和FurusakiTsukada(FT)电流公式,计算超导结中的准粒子传输系数和直流Josephson电流.结果表明:sId超导结的直流Josephson电流随温度以及结两侧的相位差变化的关系曲线强烈地依赖于d波超导体的晶轴方位;结界面的粗糙散射对Josephson电流有抑制作用 关键词: s/I/d超导结 dx2-y2波超导体 直流Josephson电流  相似文献   

3.
We consider the role of magnetic fields on the broken inversion superconductor CePt3Si. We show that the upper critical field for a field along the c axis exhibits a much weaker paramagnetic effect than for a field applied perpendicular to the c axis. The in-plane paramagnetic effect is strongly reduced by the appearance of helical structure in the order parameter. We find that, to get good agreement between theory and recent experimental measurements of H(c2), this helical structure is required. We propose a Josephson junction experiment that can be used to detect this helical order. In particular, we predict that the Josephson current will exhibit a magnetic interference pattern for a magnetic field applied perpendicular to the junction normal. We also discuss unusual magnetic effects associated with the helical order.  相似文献   

4.
We report on the first unambiguous observation of macroscopic quantum tunneling (MQT) in a single submicron Bi(2)Sr(2)CaCu(2)O(8+delta) surface intrinsic Josephson junction (IJJ) by measuring its temperature-dependent switching current distribution. All relevant junction parameters were determined in situ in the classical regime and were used to predict the behavior of the IJJ in the quantum regime via MQT theory. Experimental results agree quantitatively with the theoretical predictions, thus confirming the MQT picture. Furthermore, the data also indicate that the surface IJJ, where the current flows along the c axis of the crystal, has the conventional sinphi current-phase relationship.  相似文献   

5.
Far-infrared reflectivity along the c axis in T* phase SmLa(1-x)Sr(x)CuO(4-delta) single crystals is measured down to 8 cm(-1). Below T(c), the conductivity peak is observed at 25 cm(-1) for x = 0.15 ( T(c) = 30 K) along with two reflectivity edges at 13 and 27 cm(-1). The conductivity peak is attributed to the transverse Josephson plasma mode between two longitudinal Josephson plasma modes, while the oscillator strength of the peak is found to be smaller than that calculated using the Josephson-coupled multilayer model. The difference is explained by assuming that only a few junctions at the disordered (La,Sr)(2)O(2-delta) block layer take part in the plasma oscillation with omega(pI(')) = 27 cm(-1).  相似文献   

6.
The energy exchange between the pumping laser and FIR signal in the optically pumped FIR laser (OPFIRL) system was studied. The iteration method has been used to calculate the power density of the pumping and FIR signals at any point along the optical axis of the sample tube. It was found that the power density of the FIR signal did not always increase along the length of the laser tube. There was a maximum FIR power density at the appropriate point in the sample tube. If the distance of maximum power point from the entrance of the OPFIRL tube was taken as the length of sample tube Zopt, the maximum FIR laser output should be obtained. This was the optimum length of OPFIRL tube. The value of Zopt was closely related to the parameter of OPFIRL such as the pumping power density, the pumping detuning and the frequency of the FIR laser. The energy-exchange and the maximum output of the fir laser were calculated under the ideal condition.  相似文献   

7.
Solving the Bogoliubov-de Gennes equation, the energy levels of bound states are obtained in the ferromagnetic superconductor. The Josephson currents in a ferromagnetic superconductor/Insulator/d-wave superconductor junction are calculated as a function of the exchange field, temperature, and insulating barrier strength. It is found that the Josephson critical current is always suppressed by the presence of exchange field h and depends on crystalline axis orientation of d-wave superconductor.  相似文献   

8.
Lin S  Hu X 《Physical review letters》2008,100(24):247006
Based on computer simulations and theoretical analysis, a new dynamic state is found in inductively coupled intrinsic Josephson junctions in the absence of an external magnetic field. In this state, the plasma oscillation is uniform along the c axis with the fundamental frequency satisfying the ac Josephson relation. There are (2m+1)pi phase kinks around the junction center, with m being an integer, periodic and thus nonuniform in the c direction. In the IV characteristics, the state manifests itself as current steps occurring at all cavity modes. Inside the current steps, the plasma oscillation becomes strong, which generates several harmonics in frequency spectra at a given voltage. The recent experiments on terahertz radiations from the mesa of a Bi{2}Sr{2}CaCu{2}O{8+delta} single crystal can be explained in terms of this state.  相似文献   

9.
We derive the power of direct radiation into free space induced by Josephson oscillations in intrinsic Josephson junctions of layered superconductors. We consider the superradiation regime for a crystal cut in the form of a thin slice parallel to the c axis. We find that the radiation correction to the current-voltage characteristic in this regime depends only on crystal shape. We show that at a large number of junctions oscillations are synchronized providing high radiation power and efficiency in the terahertz frequency range. We discuss the crystal parameters and bias current optimal for radiation power and crystal cooling.  相似文献   

10.
Rae AI 《Physical review letters》2000,84(10):2235-2238
Recent experimental studies of Josephson tunneling between single crystals of Bi2Sr2CaCu2O8+x (BSCCO) and lead (Pb) films have revealed small, but finite, critical currents along the c axis of BSCCO, despite this being forbidden by symmetry. We show that the known anisotropy of the Pb order parameter would allow quite strong coupling between single crystals of BSCCO and Pb if the tunneling direction were along the BSCCO c axis and the [110] direction of the Pb crystal. This mechanism could account for the experimental results on granular Pb films if there is a few percent preferred orientation in the films. All the current experimental evidence is therefore consistent with BSCCO being a pure d-wave superconductor.  相似文献   

11.
The c-axis reflectivity spectrum of underdoped YBa2Cu3O6.6 (YBCO) is measured below T(c)=59 K in parallel magnetic fields H parallel CuO2 up to 7 T. Upon application of a parallel field, a new peak appears at finite frequency in the optical conductivity at the expense of suppression of c-axis condensate weight. We conclude that the dramatic change originates from different Josephson coupling strengths between bilayers with and without Josephson vortices. We find that the 400 cm(-1) broad conductivity peak in YBCO gains the spectral weight under parallel magnetic field; this indicates that the condensate weight at omega=0 is distributed to this peak as well as to the new optical Josephson mode.  相似文献   

12.
We report the first detailed and quantitative study of the Josephson coupling energy in the vortex liquid, Bragg glass, and vortex glass phases of Bi(2)Sr(2)CaCu(2)O(8+delta) by the Josephson plasma resonance. The measurements revealed distinct features in the T and H dependencies of the plasma frequency omega(pl) for each of these three vortex phases. When going across either the Bragg-to-vortex glass or the Bragg-to-liquid transition line, omega(pl) shows a dramatic change. We provide a quantitative discussion on the properties of these phase transitions, including the first order nature of the Bragg-to-vortex glass transition.  相似文献   

13.
We investigate the far-infrared (FIR) absorption of a two-dimensional electron gas in a periodically modulated quantizing magnetic field. The magnetic field varies along only one spatial direction and the external time-dependent electric field is linearly polarized along that axis. The mutual Coulomb interaction of the electrons is treated self-consistently in the ground state and in the absorption calculation within the Hartree approximation. The effects of the magnetic material on top of the heterostructure as a grating coupler is included in the time-dependent incident FIR electric field. We show that, similar to an electric modulation, the absorption can be directly correlated to the underlying electronic energy bands. In addition, the magnetic modulation leads to absorption spectra with a richer structure due to the quite different static response of the electron density to the modulation.  相似文献   

14.
We have performed both Josephson and quasiparticle tunneling in vacuum tunnel junctions formed between a conventional superconducting scanning tunneling microscope tip and overdoped Bi_{2}Sr_{2}CaCu_{2}O_{8+delta} single crystals. A Josephson current is observed with a peak centered at a small finite voltage due to the thermal-fluctuation-dominated superconducting phase dynamics. Josephson measurements at different surface locations yield local values for the Josephson I_{C}R_{N} product. Corresponding energy gap measurements were also performed and a surprising inverse correlation was observed between the local I_{C}R_{N} product and the local energy gap.  相似文献   

15.
Josephson oscillation of a superfluid Fermi gas   总被引:1,自引:0,他引:1  
Using the complete numerical solution of a time-dependent three-dimensional mean-field model we study the Josephson oscillation of a superfluid Fermi gas (SFG) at zero temperature formed in a combined axially-symmetric harmonic plus one-dimensional periodic optical-lattice (OL) potentials after displacing the harmonic trap along the axial OL axis. We study the dependence of Josephson frequency on the strength of the OL potential. The Josephson frequency decreases with increasing strength as found in the experiment of Cataliotti et al. [Science 293, 843 (2001)] for a Bose-Einstein condensate and of the experiment of Pezzè et al. [Phys. Rev. Lett. 93, 120401 (2004)] for an ideal Fermi gas. We demonstrate a breakdown of Josephson oscillation in the SFG for a large displacement of the harmonic trap. These features of Josephson oscillation of a SFG can be tested experimentally.  相似文献   

16.
The temperature dependence of the c-axis optical conductivity sigma(omega) of optimally and overdoped YBa2Cu3Ox ( x = 6.93 and 7) is reported in the far- (FIR) and midinfrared (MIR) range. Below T(c) we observe a transfer of spectral weight from the FIR not only to the condensate at omega = 0, but also to a new peak in the MIR. This peak is naturally explained as a transverse out-of-phase bilayer plasmon by a model for sigma(omega) which takes the layered crystal structure into account. With decreasing doping the plasmon shifts to lower frequencies and can be identified with the surprising and so far not understood FIR feature reported in underdoped bilayer cuprates.  相似文献   

17.
Well-defined zigzag-shaped ramp-type Josephson junctions between YBa2Cu3O7 and Nb have been studied. The magnetic field dependencies of the critical currents provide evidence for d-wave--induced alternations in the direction of the Josephson current between neighboring sides of the zigzag structure. The arrays present controllable model systems to study the influences of pi facets in high-angle high- T(c) grain boundaries. From the characteristics, we estimate a possible imaginary s-wave admixture to the order parameter of the YBa2Cu3O7 to be below 1%.  相似文献   

18.
The pinning energy of plane (laminar) vortices in a 3D Josephson medium is calculated within a continuous vortex model considering functions of two types: V=1−cosϕ and V= 2/π4ϕ2(2π−ϕ)2. The shape and energy of the stable and unstable vortices are found with an algorithm for the exact numerical solution of a set of difference equations. The vortex magnetic and Josephson energies diverge. The magnetic and Josephson components of the pinning energy are close in magnitude but differ in sign; as a result, the total pinning energy is smaller than its components by one order of magnitude. This result is confirmed analytically. An analytical computing method within the continuous vortex model is suggested. This method preserves the difference terms in the energy expression. The magnetic energy found by this method differs from the Josephson energy in magnitude, and the magnetic component of the pinning energy is opposite in sign to the Josephson component. Comparative analysis of the approximate approaches to energy calculation within the continuous vortex model when the difference terms are retained and when they are replaced by derivatives is performed. It is shown that the continuous vortex model gives incorrect values of the Josephson and magnetic components of the pinning energy. The actual values are several tens or several hundreds of times higher than those obtained with the continuous vortex model. Yet, since the Josephson and magnetic components of the pinning energy have different signs, the exact value of the total pinning energy and the approximate value obtained within the continuous vortex model differ insignificantly.  相似文献   

19.
A single-Cooper-pair transistor (SCPT) is coupled capacitively to a voltage biased Josephson junction, used as a high-frequency generator. Thanks to the high energy of photons generated by the Josephson junction, transitions between energy levels, not limited to the first two levels, were induced and the effect of this irradiation on the dc Josephson current of the SCPT was measured. The phase and gate bias dependence of energy levels of the SCPT at high energy is probed. Because the energies of photons can be higher than the superconducting gap we can induce not only transfer of Cooper pairs but also transfer of quasiparticles through the island of the SCPT, thus controlling the poisoning of the SCPT. This can both decrease and increase the average Josephson energy of the SCPT: its supercurrent is then controlled by high-frequency irradiation.  相似文献   

20.
Various physical systems were proposed for quantum information processing. Among those nanoscale devices appear most promising for integration in electronic circuits and large-scale applications. We discuss Josephson junction circuits in two regimes where they can be used for quantum computing. These systems combine intrinsic coherence of the superconducting state with control possibilities of single-charge circuits. In the regime where the typical charging energy dominates over the Josephson coupling, the low-temperature dynamics is limited to two states differing by a Cooper-pair charge on a superconducting island. In the opposite regime of prevailing Josephson energy, the phase (or flux) degree of freedom can be used to store and process quantum information. Under suitable conditions the system reduces to two states with different flux configurations. Several qubits can be joined together into a register. The quantum state of a qubit register can be manipulated by voltage and magnetic field pulses. The qubits are inevitably coupled to the environment. However, estimates of the phase coherence time show that many elementary quantum logic operations can be performed before the phase coherence is lost. In addition to manipulations, the final state of the qubits has to be read out. This quantum measurement process can be accomplished using a single-electron transistor for charge Josephson qubits, and a d.c.-SQUID for flux qubits. Recent successful experiments with superconducting qubits demonstrate for the first time quantum coherence in macroscopic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号