首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Five multilevel model chemistries (CBS-QB3, G3B3, G3MP2B3, MCG3/3, and MC-QCISD/3) and seven hybrid density functional methods (PBE0, B1B95, B3LYP, MPW1KCIS, PBE1KCIS, and MPW1B95) have been applied to the calculation of gas-phase basicity and proton affinity values for a series of 17 molecules relevant to the study of biological phosphoryl transfer. In addition, W1 calculations were performed on a subset of molecules. The accuracy of the methods was assessed and the nature of systematic errors was explored, leading to the introduction of a set of effective bond enthalpy and entropy correction terms. The multicoefficient correlation methods (MCG3/3 and MC-QCISD), with inclusion of specific zero-point scale factors, slightly outperform the other multilevel methods tested (CBS-QB3, G3B3, and G3MP2B3), with significantly less computational cost, and in the case of MC-QCISD, slightly less severe scaling. Four density functional methods, PBE1KCIS, MPW1B95, PBE0, and B1B95 perform nearly as well as the multilevel methods. These results provide an important set of benchmarks relevant to biological phosphoryl transfer reactions.  相似文献   

2.
Several reports of experimentally derived proton affinity values and gas-phase basicity values for amino acids and peptides have recently appeared in the literature. Here, we show that the thermodynamic quantity that is measured by the Fourier transform mass spectrometry proton transfer bracketing of amino acids and peptides is gas-phase basicity and not proton affinity. Both experimental and theoretical evidence supports this conclusion. The difference between the values determined by proton transfer bracketing measurements for lysine versus leucine is consistent with a difference in gas-phase basicity rather than proton affinity. The rate of proton transfer from protonated lysine to a series of reference compounds have been measured. Entropy-driven, endothermic proton transfer is found to occur at the collision rate. Recent ab initio and semi-empirical calculations of the proton affinity of lysine are found to agree with the value that is derived from bracketing studies when one assumes that gas-phase basicity is measured. While entropy-driven reactions have been observed previously in high-pressure mass spectrometers, this is the first evidence for such reactions at low pressure in a Fourier transform mass spectrometer.  相似文献   

3.
Proton transfer reactions are the rate-limiting steps in many biological and synthetic chemical processes, often requiring complex cofactors or catalysts to overcome the generally unfavourable thermodynamic process of carbanion intermediate formation. It has been suggested that quantum tunnelling processes enhance the kinetics of some of these reactions, which when coupled to protein motions may be an important consideration for enzyme catalysis. To obtain a better fundamental and quantitative understanding of these proton transfer mechanisms, a computational analysis of the intramolecular proton transfer from a carbon acid in the small molecule, 4-nitropentanoic acid, in aqueous solution is presented. Potential-energy surfaces from gas-phase, implicit and QM/MM (quantum mechanical/molecular mechanical) explicit solvation quantum chemistry models are compared, and the potential of mean force, for the full reaction coordinate, using umbrella-sampling molecular dynamics is analysed. Semi-classical multidimensional tunnelling corrections are also used to estimate the quantum tunnelling contributions and to understand the origin of the primary deuterium kinetic isotope effects (KIEs). The computational results are found to be in excellent agreement with the KIEs and the energetics obtained experimentally.  相似文献   

4.
Semiempirical quantum models are routinely used to study mechanisms of RNA catalysis and phosphoryl transfer reactions using combined quantum mechanical (QM)/molecular mechanical methods. Herein, we provide a broad assessment of the performance of existing semiempirical quantum models to describe nucleic acid structure and reactivity to quantify their limitations and guide the development of next‐generation quantum models with improved accuracy. Neglect of diatomic differential overlap and self‐consistent density‐functional tight‐binding semiempirical models are evaluated against high‐level QM benchmark calculations for seven biologically important datasets. The datasets include: proton affinities, polarizabilities, nucleobase dimer interactions, dimethyl phosphate anion, nucleoside sugar and glycosidic torsion conformations, and RNA phosphoryl transfer model reactions. As an additional baseline, comparisons are made with several commonly used density‐functional models, including M062X and B3LYP (in some cases with dispersion corrections). The results show that, among the semiempirical models examined, the AM1/d‐PhoT model is the most robust at predicting proton affinities. AM1/d‐PhoT and DFTB3‐3ob/OPhyd reproduce the MP2 potential energy surfaces of 6 associative RNA phosphoryl transfer model reactions reasonably well. Further, a recently developed linear‐scaling “modified divide‐and‐conquer” model exhibits the most accurate results for binding energies of both hydrogen bonded and stacked nucleobase dimers. The semiempirical models considered here are shown to underestimate the isotropic polarizabilities of neutral molecules by approximately 30%. The semiempirical models also fail to adequately describe torsion profiles for the dimethyl phosphate anion, the nucleoside sugar ring puckers, and the rotations about the nucleoside glycosidic bond. The modeling of pentavalent phosphorus, particularly with thio substitutions often used experimentally as mechanistic probes, was problematic for all of the models considered. Analysis of the strengths and weakness of the models suggests that the creation of robust next‐generation models should emphasize the improvement of relative conformational energies and barriers, and nonbonded interactions. © 2015 Wiley Periodicals, Inc.  相似文献   

5.
The knowledge of thermochemical parameters such as the enthalpy of formation, gas-phase basicity, and proton affinity may be the key to understanding molecular reactivity. The obtention of these thermochemical parameters by theoretical chemical models may be advantageous when experimental measurements are difficult to accomplish. The development of ab initio composite models represents a major advance in the obtention of these thermochemical parameters, but these methods do not always lead to accurate values. Aiming at achieving a comparison between the ab initio models and the hybrid models based on the density functional theory (DFT), we have studied gamma-butyrolactone and 2-pyrrolidinone with a goal of obtaining high-quality thermochemical parameters using the composite chemical models G2, G2MP2, MP2, G3, CBS-Q, CBS-4, and CBS-QB3; the DFT methods B3LYP, B3P86, PW91PW91, mPW1PW, and B98; and the basis sets 6-31G(d), 6-31+G(d), 6-31G(d,p), 6-31+G(d,p), 6-31++G(d,p), 6-311G(d), 6-311+G(d), 6-311G(d,p), 6-311+G(d,p), 6-311++G(d,p), aug-cc-pVDZ, and aug-cc-pVTZ. Values obtained for the enthalpies of formation, proton affinity, and gas-phase basicity of the two target molecules were compared to the experimental data reported in the literature. The best results were achieved with the use of DFT models, and the B3LYP method led to the most accurate data.  相似文献   

6.
The proton affinity and gas-phase basicity of proline were evaluated by using density functional theory coupling the B3-LYP hybrid functional with the extended 6--311++G** basis set. Cis and trans conformations of the carboxyl moiety for both exo and endo ring structures were considered for the neutral proline. The results show that the most stable structure of proline has the endo ring conformation with the carboxyl group in the cis position. The structure at the global minimum is stabilized by an intramolecular hydrogen bond. The nitrogen of the ring in the exo form is the preferred protonation site. The calculated proton affinity (924.3 kJ mol(-1)) and gas-phase basicity (894.4 kJ mol(-1)) are in very good agreement with the experimental counterparts.  相似文献   

7.
The goal of this work was to obtain a detailed insight on the gas-phase protonation energetic of adenosine using both mass spectrometric experiments and quantum chemical calculations. The experimental approach used the extended kinetic method with nanoelectrospray ionization and collision-induced dissociation tandem mass spectrometry. This method provides experimental values for proton affinity, PA(adenosine) = 979 +/- 1 kJ.mol (-1), and for the "protonation entropy", Delta p S degrees (adenosine) = S degrees (adenosineH (+)) - S degrees (adenosine) = -5 +/- 5 J.mol (-1).K (-1). The corresponding gas-phase basicity is consequently equal to: GB(adenosine) = 945 +/- 2 kJ.mol (-1) at 298K. Theoretical calculations conducted at the B3LYP/6-311+G(3df,2p)//B3LYP/6-31+G(d,p) level, including 298 K enthalpy correction, predict a proton affinity value of 974 kJ.mol (-1) after consideration of isodesmic proton transfer reactions with pyridine as the reference base. Moreover, computations clearly showed that N3 is the most favorable protonation site for adenosine, due to a strong internal hydrogen bond involving the hydroxyl group at the 2' position of the ribose sugar moiety, unlike observations for adenine and 2'-deoxyadenosine, where protonation occurs on N1. The existence of negligible protonation entropy is confirmed by calculations (theoretical Delta p S degrees (adenosine) approximately -2/-3 J.mol (-1).K (-1)) including conformational analysis and entropy of hindered rotations. Thus, the calculated protonation thermochemical properties are in good agreement with our experimental measurements. It may be noted that the new PA value is approximately 10 kJ.mol (-1) lower than the one reported in the National Institute of Standards and Technology (NIST) database, thus pointing to a correction of the tabulated protonation thermochemistry of adenosine.  相似文献   

8.
The thermochemical properties of some small clusters such as the (H2O)2*+ dimer have already been investigated by both experimental and theoretical methods. The recent method to selectively prepare the ammonia-water ionized dimer [NH3, H2O]*+ (and not its proton transfer isomer [NH4+, OH*]) allowed us to study its chemical reactivity. This study focuses on the charge and proton transfer pathways: Ion-molecule reactions in the cell of an FT-ICR mass spectrometer were carried out with a range of organic compounds. Examination of the reactivity of the [NH3, H2O]*+ ionized dimer versus ionization energy and proton affinity of the neutral reagents shows a threshold in the reactivity in both instances. This leads to a bracketing of thermochemical properties related to the dimer. From these experiments and in agreement with ab initio calculations, the adiabatic recombination energy of the [NH3, H2O]*+ dimer was evaluated at -9.38 +/- 0.04 eV. The proton affinity bracketing required the reevaluation of two reference gas-phase basicity values. The results, in good agreement with the calculation, lead to an evaluation of the proton affinity of the [NH2*, H2O] dimer at 204.4 +/- 0.9 kcal mol(-1). These two experimental values are respectively related to the ionization energy of NH3*+ and to the proton affinity of NH2* by the difference in single water molecule solvation energies of ionized ammonia, of neutral ammonia, and of the NH2* radical.  相似文献   

9.
A density functional study of the hydrolysis reaction of phosphodiesters with a series of attacking nucleophiles in the gas phase and in solution is presented. The nucleophiles HOH, HO-, CH3OH, and CH3O- were studied in reactions with ethylene phosphate, 2'3'-ribose cyclic phosphate and in their neutral (protonated) and monoanionic forms. Stationary-point geometries for the reactions were determined at the density functional B3LYP/6-31++G(d,p) level followed by energy refinement at the B3LYP/6-311++G(3df,2p) level. Solvation effects were estimated by using a dielectric approximation with the polarizable continuum model (PCM) at the gas-phase optimized geometries. This series of reactions characterizes factors that influence the intrinsic reactivity of the model phosphate compounds, including the effect of nucleophile, protonation state, cyclic structure, and solvent. The present study of the in-line mechanism for phosphodiester hydrolysis, a reaction of considerable biological importance, has implications for enzymatic mechanisms. The analysis generally supports the associative mechanism for phosphate ester hydrolysis. The results highlight the importance for the reaction barrier of charge neutralization resulting from the protonation of the nonbridging phosphoryl oxygens and the role of internal hydrogen transfer in the gas-phase mechanism. It also shows that solvent stabilization has a profound influence on the relative barrier heights for the dianionic, monoanionic, and neutral reactions. The calculations provide a comprehensive data set for the in-line hydrolysis mechanisms that can be used for the development of improved semiempirical quantum models for phosphate hydrolysis reactions.  相似文献   

10.
Structures of neutral and protonated polyglycines (Gly(n) and Gly(n)H(+) with n = 1-6) in the vicinity of global energy minima were calculated using the density functional theory at the B3LYP/6-311++G** (A) and B3LYP/6-31+G** (B) levels. Ninety-three structures were chosen for conformation and protonation studies. Geometries of the peptides are found to vary from open chains to multiple rings. Intramolecular hydrogen bonding is deduced to be the driving force for conformational stability. The preferred protonation sites are shown to be the terminal nitrogen atom and its adjacent amide oxygen atom. Structural series are developed according to geometrical form, hydrogen bonding, and protonation site. Physical factors that influence the relative electronic and thermodynamic stabilities of different structural series are examined. To obtain ab initio values of highest quality for gas-phase basicity (GB) and proton affinity (PA), electronic energies for n = 1-6 and thermal corrections to Gibbs free energy and enthalpy for n = 1-3 were calculated at level A, supplemented by thermal corrections for n = 4-6 at level B. Calculated GB and PA values are compared with mass spectral results obtained by the kinetic method (KM) and reaction bracketing (RB). The KM results and the ab initio values derived from structurally compatible pairs of lowest free energies are generally in good agreement, but the RB results for GB are lower by 2-8 kcal/mol for n = 2-6. Several reaction pathways are proposed to elucidate the experimental results. On the basis of theoretical structures consistent with the measurements, it is concluded that KM mostly samples the neutral and protonated structures of highest populations at thermal equilibrium, whereas RB targets those with sterically most accessible sites for protonation and deprotonation.  相似文献   

11.
Pseudorotation reactions of biologically relevant oxyphosphoranes were studied by using density functional and continuum solvation methods. A series of 16 pseudorotation reactions involving acyclic and cyclic oxyphosphoranes in neutral and monoanionic (singly deprotonated) forms were studied, in addition to pseudorotation of PF5. The effect of solvent was treated by using three different solvation models for comparison. The barriers to pseudorotation ranged from 1.5 to 8.1 kcal mol(-1) and were influenced systematically by charge state, apicophilicity of ligands, intramolecular hydrogen bonding, cyclic structure and solvation. Barriers to pseudorotation for monoanionic phosphoranes occur with the anionic oxo ligand as the pivotal atom, and are generally lower than for neutral phosphoranes. The OCH3 groups were observed to be more apicophilic than OH groups, and hence pseudorotations that involve axial OCH3/equatorial OH exchange had higher reaction and activation free energy values. Solvent generally lowered barriers relative to the gas-phase reactions. These results, together with isotope 18O exchange experiments, support the assertion that dianionic phosphoranes are not sufficiently long-lived to undergo pseudorotation. Comparison of the density functional results with those from several semiempirical quantum models highlight a challenge for new-generation hybrid quantum mechanical/molecular mechanical potentials for non-enzymatic and enzymatic phosphoryl transfer reactions: the reliable modeling of pseudorotation processes.  相似文献   

12.
The various protonated forms of phenol (1), catechol (2), resorcinol (3), and hydroquinone (4) were explored by ab initio quantum chemical calculations at the MP2/6-31G(d) and B3LYP/6-31G(d) levels. Proton affinities (PA) of 1-4 were calculated by the combined G2(MP2,SVP) method, and their gas-phase basicities were estimated after calculation of the change in entropy on protonation. These theoretical data were compared with the corresponding experimental values determined in a high-pressure mass spectrometer. This comparison confirmed that phenols are essentially carbon bases and that protonation generally occurs in a position para to the hydroxyl group. Resorcinol is the most effective base (PA = 856 kJ mol-1) due to the participation of both oxygen atoms in the stabilization of the protonated form. Since protonation is accompanied by a freezing of the two internal rotations, a significant decrease in entropy is observed. The basicity of catechol (PA = 823 kJ mol-1) is due to the existence of an intramolecular hydrogen bond, which is strengthened upon protonation. The lower basicity of hydroquinone (PA = 808 kJ mol-1) is a consequence of the fact that protonation necessarily occurs in a position ortho to the hydroxyl group. When the previously published data are reconsidered and a corrected protonation entropy is used, a proton affinity value of 820 kJ mol-1 is obtained for phenol.  相似文献   

13.
Seventeen superbasic phosphazenes and two Verkade's bases were used to supplement and extend the experimental gas-phase basicity scale in the superbasic region. For 19 strong bases the gas-phase basicity values (GB) were determined for the first time. Among them are such well-known bases as BEMP (1071.2 kJ/mol), Verkade's Me-substituted base (1083.8 kJ/mol), Et-N=P(NMe2)2-N=P(NMe2)3 (Et-P2 phosphazene, 1106.9 kJ/mol), and t-Bu-N=P(NMe2)3 (t-Bu-P1 phosphazene, 1058.0 kJ/mol). For the first time experimental GB values were determined for P2 phosphazenes. Together with our previous results self-consistent experimental gas-phase basicity scale between 1020 and 1107 kJ/mol is now established. This way an important region of the gas-phase basicity scale, which was earlier dominated by metal hydroxide bases, is now covered also with organic bases making it more accessible for further studies. The GB values for several superbases were calculated using density functional theory at the B3LYP/6-311+G** level. For the phosphazene family the standard deviation of the correlation between the experimental and theoretical values was 6.5 kJ/mol.  相似文献   

14.
The gas-phase basicities of oligomers of alanine and valine have been determined by bracketing measurements in an external source Fourier transform mass spectrometer. The results are compared to the oligomers of glycine, which were reported in an earlier publication, to observe the effect of the alkyl group and the increasing gas-phase basicity of the monomer units on the rates of proton transfer reactions. Molecular orbital calculations were performed on protonated triglycine and trialanine to determine how the alkyl groups affect intramolecular interactions. The results show that a high degree of ordering of the carbonyl groups is present in the protonated species. The carbonyl groups in turn order the side chain alkyl groups and decrease the rates of proton transfer reactions in, for example, the oligomers of valine.  相似文献   

15.
The effect of gas-phase proton transfer reactions on the mass spectral response of solvents and analytes with known gas-phase proton affinities was evaluated. Methanol, ethanol, propanol and water mixtures were employed to probe the effect of gas-phase proton transfer reactions on the abundance of protonated solvent ions. Ion-molecule reactions were carried out either in an atmospheric pressure electrospray ionization source or in the central quadrupole of a triple-quadrupole mass spectrometer. The introduction of solvent vapor with higher gas-phase proton affinity than the solvent being electrosprayed caused protons to transfer to the gas-phase solvent molecules. In mixed solvents, protonated solvent clusters of the solvent with higher gas-phase proton affinity dominated the resulting mass spectra. The effect of solvent gas-phase proton affinity on analyte response was also investigated, and the analyte response was suppressed or eliminated in solvents with gas-phase proton affinities higher than that of the analyte.  相似文献   

16.
The gas-phase basicity (GB) of the flexible polyfunctional N(1),N(1)-dimethyl-N(2)-beta-(2-pyridylethyl)formamidine (1) containing two potential basic sites (the ring N-aza and the chain N-imino) is obtained from proton-transfer equilibrium constant measurements, using Fourier-transform ion-cyclotron resonance mass spectrometry. Comparison of the experimental GB obtained for 1 with those reported for model amidines and azines indicates that the chain N-imino in the amidine group is the favored site of protonation. Semiempirical (AM1) and ab initio calculations (HF, MP2, and DFT), performed for 1 and its protonated forms, confirm this interpretation. These results are in contrast to those found previously for N(1),N(1)-dimethyl-N(2)-azinylformamidines (containing the amidine function directly linked to the azinyl ring), in which the ring N-aza is the most basic site in the gas phase. The separation of the two potential basic sites in 1 by the ethylene chain interrupts the resonance conjugation between the two functions and changes their relative basicities and, thus, the preferable site of protonation. It also increases the chelation effect against the proton and the gas-phase basicity of 1 in such a magnitude that consequently 1 may be classified as a superbase (GB = 241.1 kcal mol(-)(1)). A transition state corresponding to the internal transfer of the proton (ITP) between the ring N-aza and the chain N-imino in 1 is investigated at the DFT(B3LYP)/6-31G level. The energy barrier calculated for the ITP between the two basic sites is small and vanishes when zero-point vibrational terms and thermal corrections are applied to obtain the enthalpy or Gibbs energy of activation for the proton transfer. Additional calculations at the DFT(MPW1K)/6-31G level confirm this behavior. This indicates that the quantum-chemical ITP in 1 has a single-well character. The proton is located on the N-imino site, and the H-bond is formed with the N-aza site.  相似文献   

17.
This study considered the possibility of proton transfer reactions through the peptide bond under different environments using the dipeptide and the 12-mer polyglycine α-helix models, in which diglycine is substituted by the 12-mer polyglycine helix. Ab initio molecular orbital calculations were carried out at the B3LYP/6-31+G(d) level of theory. To evaluate the free energies in solution, calculations of the solvation energies were performed using PCM. The correction functions on the calculated solvation energies were provided to reproduce experimental pKa values. The proton transfer reactions through the peptide bond are concluded to be possible in the protein for a wide range of proton acceptors. His complex has two free energy minima along a putative proton transfer pathway in spite of one minimum in the other complexes. The α-helix is estimated to suppress the proton transfer reactions through the peptide bond at the termini of the helix, although it is possible to proceed when the proton affinity of the acceptor is low. Contribution to the Mark S. Gordon 65th Birthday Festschrift Issue.  相似文献   

18.
The gas-phase basicity (GB) of aminoacetonitrile (NH2CH2CN, 1) has been determined from measurement of proton transfer equilibrium constants in an ion cyclotron resonance mass spectrometer (GB(1) = 789.3 +/- 1.0 kJ x mol(-1)). Molecular orbital calculations up to the G2 level demonstrate that protonation occurs preferentially on the nitrogen atom of the NH2 group, and provide a theoretical proton affinity (PA(1)) of 824.0 kJ x mol(-1). Exact calculation of the entropy associated with hindered rotations and consideration of Boltzman distribution of conformers allow a theoretical estimate of the molar protonation entropy S degrees (1H+) - S degrees (1) = 8.6 J x mol(-1) x K(-1). Combining this value with experimental GB(1) leads to an 'experimental' proton affinity of 819.2 kJ x mol(-1), in close agreement with the G2 expectation.  相似文献   

19.
Ab initio quantum mechanical calculations were used in studying the origin of the exceptionally high basicities of four diamines (13-16) with pK(a1) values ranging from 12.1 to 25. The computational approach involved the calculation of the gas-phase proton affinities of the molecules studied at the MP2/6-31G//HF/6-31G level and the solvation energies with the polarizable continuum model at the HF/6-31G level. The calculated gas-phase and aqueous-phase proton affinities of a structurally diverse series of amines were compared with the corresponding experimental gas-phase proton affinities and pK(a1) values. The calculated values were found to be in reasonable agreement with the experimental ones. The high basicities of the studied diamines were found to originate from the nitrogen lone-pair repulsion, solvation effects, and strong intramolecular hydrogen bonds. Each of these factors were found to be able to increase the pK(a1) values of the high-basicity diamines by 2-6 pK(a) units. The relative contributions of the factors varied between the compounds. The nitrogen lone-pair repulsion was estimated to be the most important factor in increasing the pK(a1) values. In addition, barriers for proton transfers between the nitrogens of selected diamines were calculated, and comparison was made between the barrier heights and the geometries of the diamines.  相似文献   

20.
The Lewis basicity of a series of phosphoryl compounds was examined using DFT and ab initio methods, including solvation effects. The enthalpies of adduct formation with two archetypal Lewis acids, antimony pentachloride and boron trifluoride, used to define the donor number DN and the BF3 affinity (BF3A) respectively, were examined. The BF3 adducts allow the use of the high-accuracy G4 approach, whereas for SbCl5 adducts, three different DFT formalisms, including empirical dispersion corrections, were used because the G4 formalism is not available for third-row elements. For a comparison with experimental data, solvation effects were taken into account by using the polarizable continuum model. The experimental BF3 affinities were well reproduced by G4 calculations when including PCM solvation. Conversely, comparisons of our calculated values and experimental results reported in the literature show that SbCl5 enthalpies for phosphoramides are in error. In particular the DN for HMPA should be revised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号