共查询到20条相似文献,搜索用时 0 毫秒
1.
Valeev EF 《The Journal of chemical physics》2006,125(24):244106
Explicitly correlated R12 methods using a single short-range correlation factor (also known as F12 methods) have dramatically smaller basis set errors compared to the standard wave function counterparts, even when used with small basis sets. Correlations on several length scales, however, may not be described efficiently with one correlation factor. Here the authors explore a more general MP2-R12 method in which each electron pair uses a set of (contracted) Gaussian-type geminals (GTGs) with fixed exponents, whose coefficients are optimized linearly. The following features distinguish the current method from related explicitly correlated approaches published in the literature: (1) only two-electron integrals are needed, (2) the only approximations are the resolution of the identity and the generalized Brillouin condition, (3) only linear parameters are optimized, and (4) an arbitrary number of (non-)contracted GTGs can appear. The present method using only three GTGs and a double-zeta quality basis computed valence correlation energies for a set of 20 small molecules only 2.2% removed from the basis set limit. The average basis set error reduces to 1.2% using a near-complete set of seven GTGs with the double-zeta basis set. The conventional MP2 energies computed with much larger quadruple, quintuple, and sextuple basis sets all had larger average errors: 4.6%, 2.4%, and 1.5%, respectively. The new method compares well to the published MP2-R12 method using a single Slater-type geminal (STG) correlation factor. For example, the average basis set error in the absolute MP2-R12 energy obtained with the exp(-r12) correlation factor is 1.7%. Correlation contribution to atomization energies evaluated with the present method and with the STG-based method only required a double-zeta basis set to exceed the precision of the conventional sextuple-zeta result. The new method is shown to always be numerically stable if linear dependencies are removed from the two-particle basis and the zeroth-order Hamiltonian matrix is made positive definite. 相似文献
2.
Wim Klopper Rafał A. Bachorz Christof Hättig David P. Tew 《Theoretical chemistry accounts》2010,126(5-6):289-304
Explicitly correlated coupled-cluster theory has developed into a valuable computational tool for the calculation of electronic energies close to the limit of a complete basis set of atomic orbitals. In particular at the level of coupled-cluster theory with single and double excitations (CCSD), the space of double excitations is quickly extended towards a complete basis when Slater-type geminals are added to the wave function expansion. The purpose of the present article is to demonstrate the accuracy and efficiency that can be obtained in computational thermochemistry by a CCSD model that uses such Slater-type geminals. This model is denoted as CCSD(F12), where the acronym F12 highlights the fact that the Slater-type geminals are functions f(r 12) of the interelectronic distances r 12 in the system. The performance of explicitly correlated CCSD(F12) coupled-cluster theory is demonstrated by computing the atomization energies of 73 molecules (containing H, C, N, O, and F) with an estimated root-mean-square deviation from the values compiled in the Active Thermochemical Tables of σ = 0.10 kJ/mol per valence electron. To reach this accuracy, not only the frozen-core CCSD basis-set limit but also high-order excitations (connected triple and quadruple excitations), core–valence correlation effects, anharmonic vibrational zero-point energies, and scalar and spin–orbit relativistic effects must be taken into account. 相似文献
3.
We have investigated the correlation factors exp(-zetar12), r12 exp(-zetar12), erfc(zetar12), and r12 erfc(zetar12) in place of the linear-r12 term for use in explicitly correlated electronic-structure methods. The accuracy obtained with all of these correlation factors is significantly greater than that obtained with the plain correlation factor r12. Polarization functions that are more diffuse than those of standard basis sets give even better results. The correlation factor exp(-zetar12) is very close to the optimum correlation factor for helium and outperforms the others. 相似文献
4.
The basis set convergence of explicitly correlated double-hybrid density functional theory (DFT) is investigated using the B2GP-PLYP functional. As reference values, we use basis set limit B2GP-PLYP-F12 reaction energies extrapolated from the aug(')-cc-pV(Q+d)Z and aug(')-cc-pV(5+d)Z basis sets. Explicitly correlated double-hybrid DFT calculations converge significantly faster to the basis set limit than conventional calculations done with basis sets saturated up to the same angular momentum (typically, one "gains" one angular momentum in the explicitly correlated calculations). In explicitly correlated F12 calculations the VnZ-F12 basis sets converge faster than the orbital A(')VnZ basis sets. Furthermore, basis set convergence of the MP2-F12 component is apparently faster than that of the underlying Kohn-Sham calculation. Therefore, the most cost-effective approach consists of combining the MP2-F12 correlation energy from a comparatively small basis set such as VDZ-F12 with a DFT energy from a larger basis set such as aug(')-cc-pV(T+d)Z. 相似文献
5.
The theoretical and technical foundations are presented for the efficient relativistic electronic structure theories to treat heavy-atomic molecular systems. This review contains two surveys of four-component and two-component quasi-relativistic approaches. First, we review our highly efficient computational scheme for four-component relativistic ab initio molecular orbital (MO) methods over generally contracted spherical harmonic Gaussian-type spinors (GTSs). Illustrative calculations, which are performed with a new four-component relativistic ab initio molecular orbital program package REL4D, clearly show the efficiency of our computational scheme by the Dirac-Hartree-Fock (DHF) and Dirac-Hartree-Fock (DKS) methods. Next, in the two-component quasi-relativistic framework, two relativistic Hamiltonians, RESC and higher order Douglas-Kroll (DK) Hamiltonians, are introduced, and several illustrative calculations are shown. Numerical results for several systems show that good accuracy can be obtained with our third-order DK (DK3) Hamiltonian. 相似文献
6.
7.
Frank E. Harris 《International journal of quantum chemistry》1978,13(2):189-198
We consider the “Hartree Problem,” here defined as the problem of finding the orthogonal one-electron states which in a single determinant minimize the electronic energy, excluding exchange contributions. These states may provide a useful basis for correlation-energy studies. It is shown how the “Hartree Problem,” although superficially not of pseudoeigenvalue form, can nevertheless be cast in such a form and solved by an iterative diagonalization process. 相似文献
8.
Roman F. Nalewajski 《Foundations of Chemistry》2014,16(1):27-62
It is argued that some elusive “entropic” characteristics of chemical bonds, e.g., bond multiplicities (orders), which connect the bonded atoms in molecules, can be probed using quantities and techniques of Information Theory (IT). This complementary perspective increases our insight and understanding of the molecular electronic structure. The specific IT tools for detecting effects of chemical bonds and predicting their entropic multiplicities in molecules are summarized. Alternative information densities, including measures of the local entropy deficiency or its displacement relative to the system atomic promolecule, and the nonadditive Fisher information in the atomic orbital resolution(called contragradience) are used to diagnose the bonding patterns in illustrative diatomic and polyatomic molecules. The elements of the orbital communication theory of the chemical bond are briefly summarized and illustrated for the simplest case of the two-orbital model. The information-cascade perspective also suggests a novel, indirect mechanism of the orbital interactions in molecular systems, through “bridges” (orbital intermediates), in addition to the familiar direct chemical bonds realized through “space”, as a result of the orbital constructive interference in the subspace of the occupied molecular orbitals. Some implications of these two sources of chemical bonds in propellanes, π-electron systems and polymers are examined. The current–density concept associated with the wave-function phase is introduced and the relevant phase-continuity equation is discussed. For the first time, the quantum generalizations of the classical measures of the information content, functionals of the probability distribution alone, are introduced to distinguish systems with the same electron density, but differing in their current(phase) composition. The corresponding information/entropy sources are identified in the associated continuity equations. 相似文献
9.
A valence-type anion of the canonical tautomer of uracil has been characterized using explicitly correlated second-order Moller-Plesset perturbation theory (RI-MP2-R12) in conjunction with conventional coupled-cluster theory with single, double, and perturbative triple excitations. At this level of electron-correlation treatment and after inclusion of a zero-point vibrational energy correction, determined in the harmonic approximation at the RI-MP2 level of theory, the valence anion is adiabatically stable with respect to the neutral molecule by 40 meV. The anion is characterized by a vertical detachment energy of 0.60 eV. To obtain accurate estimates of the vertical and adiabatic electron binding energies, a scheme was applied in which electronic energy contributions from various levels of theory were added, each of them extrapolated to the corresponding basis-set limit. The MP2 basis-set limits were also evaluated using an explicitly correlated approach, and the results of these calculations are in agreement with the extrapolated values. A remarkable feature of the valence anionic state is that the adiabatic electron binding energy is positive but smaller than the adiabatic electron binding energy of the dipole-bound state. 相似文献
10.
We propose a new computational protocol to obtain highly accurate theoretical reference data. This protocol employs the explicitly
correlated coupled-cluster method with iterative single and double excitations as well as perturbative triple excitations,
CCSD(T)(F12), using quadruple-z\zeta basis sets. Higher excitations are accounted for by conventional CCSDT(Q) calculations using double-z\zeta basis sets, while core/core-valence correlation effects are estimated by conventional CCSD(T) calculations using quadruple-z\zeta basis sets. Finally, scalar-relativistic effects are accounted for by conventional CCSD(T) calculations using triple-z\zeta basis sets. In the present article, this protocol is applied to the popular test sets AE6 and BH6. An error analysis shows
that the new reference values obtained by our computational protocol have an uncertainty of less than 1 kcal/mol (chemical
accuracy). Furthermore, concerning the atomization energies, a cancellation of the basis set incompleteness error in the CCSD(T)(F12)
perturbative triples contribution with the corresponding error in the contribution from higher excitations is observed. This
error cancellation is diminished by the CCSD(T*)(F12) method. Thus, we recommend the use of the CCSD(T*)(F12) method only
for small- and medium-sized basis sets, while the CCSD(T)(F12) approach is preferred for high-accuracy calculations in large
basis sets. 相似文献
11.
The [2](R12) method [M. Torheyden and E. F. Valeev, J. Chem. Phys. 131, 171103 (2009)] is an explicitly correlated perturbative correction that can greatly reduce the basis set error of an arbitrary electronic structure method for which the two-electron density matrix is available. Here we present a spin-adapted variant (denoted as SF-[2](R12)) that is formulated completely in terms of spin-free quantities. A spin-free cumulant decomposition and multi-reference generalized Brillouin condition are used to avoid three-particle reduced density matrix completely. The computational complexity of SF-[2](R12) is proportional to the sixth power of the system size and is comparable to the cost of the single-reference MP2-R12 method. The SF-[2](R12) method is shown to decrease greatly the basis set error of multi-configurational wave functions. 相似文献
12.
Response theory up to infinite order is combined with the explicitly correlated coupled-cluster singles and doubles model including linear-r(12) corrections, CCSD(R12). The additional terms introduced by the linear-r(12) contributions, not present in the conventional CCSD calculation, are derived and discussed with respect to the extra costs required for their evaluation. An implementation is presented up to the cubic response function for one-electron perturbations, i.e., up to frequency-dependent second hyperpolarizabilities. As first applications the authors computed the electronic polarizabilities and second hyperpolarizabilities of BH, N(2), and formaldehyde and show that the improvement in the one-electron basis set convergence known from the R12 method for ground state energies is retained for higher-order optical properties. Frequency-dependent results are presented for the second hyperpolarizability of N(2). 相似文献
13.
14.
Second order R12 theory is presented and derived alternatively using the second quantized hole-particle formalism. We have shown that in order to ensure the strong orthogonality between the R12 and the conventional part of the wave function, the explicit use of projection operators can be easily avoided by an appropriate partitioning of the involved operators to parts which are fully describable within the computational orbital basis and complementary parts that involve imaginary orbitals from the complete orbital basis. Various Hamiltonian splittings are discussed and computationally investigated for a set of nine molecules and their atomization energies. If no generalized Brillouin condition is assumed, with all relevant partitionings the one-particle contribution arising in the explicitly correlated part of the first order wave function has to be considered and has a significant role when smaller atomic orbital basis sets are used. The most appropriate Hamiltonian splitting results if one follows the conventional perturbation theory for a general non-Hartree-Fock reference. Then, no couplings between the R12 part and the conventional part arise within the first order wave function. The computationally most favorable splitting when the whole complementary part of the Hamiltonian is treated as a perturbation fails badly. These conclusions also apply to MP2-F12 approaches with different correlation factors. 相似文献
15.
An explicitly correlated linear-r(12) variational method is developed for a system of two electrons confined to a two-dimensional square well with infinite walls. The wave function is written as an expansion in products of non-negative integer powers of the relative and center-of-mass electronic coordinates and powers of r(12) restricted to 0 and 1. This form indirectly includes higher powers of the interelectronic distance and exhibits a much faster convergence than a similar expansion without r(12)-dependent terms. The method is implemented using high-precision floating-point arithmetic. Ground-state total energies are reported with at least 12 accurate significant figures for squares with sides from 1 to 50 bohrs. The method can be used "as is" for excited states and for two-dimensional rectangular wells. We also show that wave functions for two electrons in a square and in a rectangle have a higher symmetry than can be accounted for by the point group of the system. 相似文献
16.
17.
Jacek Rychlewski 《International journal of quantum chemistry》1994,49(4):477-494
The explicitly correlated wave functions used in variational molecular calculations are reviewed. Different types of such functions are considered. The state of art and future perspectives are briefly discussed. © 1994 John Wiley & Sons, Inc. 相似文献
18.
Large expansions in basis sets of explicitly correlated Gaussian functions and the variation-perturbation technique were used to calculate the static dipole polarizability of the helium dimer at 16 different internuclear separations from 1.0 to 9.0 bohrs. The convergence towards the complete basis set limit was analyzed in order to estimate uncertainties of all the calculated values. The results are significantly more accurate than literature data. Asymptotically correct analytic fits for the trace and anisotropy of collision-induced polarizability were obtained. 相似文献
19.
V. M. Tapilin 《Journal of Structural Chemistry》1997,38(5):689-697
Electron wave functions are calculated for a system of two onedimensional atomic chains to illustrate the application of the
modified tight binding equation method. A transfer of the local density of electronic states (LDES) from terminal to internal
atoms of the chains, the effect of the emergence of the local state on LDES, and the variation of occupancy as a function
of energy depending on the position of the atom relative to the end of the chain are discussed. In the limiting case of noninteracting
chains, changes in LDES due to adsorption of the atom on the chain are considered.
Translated fromZhurnal Strukturnoi Khimii, Vol. 38, No. 5, pp. 825–833, September–October, 1997. 相似文献
20.
The ground state and some low-lying excited states arising from the 1s2 2s2p2 configuration of the boron isoelectronic series are studied starting from explicitly correlated multideterminant wave functions. One- and two-body densities in position space have been calculated and different expectation values such as , , , , , and , where r, r12, and R stand for the electron-nucleus, interelectronic, and two electron center of mass coordinates, respectively, have been obtained. The energetic ordering of the excited states and the fulfillment of the Hund's rules is analyzed systematically along the isoelectronic series in terms of the electron-electron and electron-nucleus potential energies. The effects of electronic correlations have been systematically studied by comparing the correlated results with the corresponding noncorrelated ones. All the calculations have been done by using the variational Monte Carlo method. 相似文献