首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 154 毫秒
1.
基于无基底焦平面阵列红外热像仪的理论模型分析   总被引:1,自引:0,他引:1       下载免费PDF全文
蒋兴凯  张青川  史海涛  毛亮  程腾  伍小平 《物理学报》2011,60(5):54401-054401
基于双材料微悬臂梁热变形原理的光学读出非制冷红外探测阵列经历了从有基底结构向无基底结构的发展过渡,无基底阵列的红外成像结果和有限元模型分析均表明无基底阵列不满足恒温基底条件.本文结合电学比拟的方法,提出了一种新的基于无基底焦平面阵列(focal plane Array,FPA)的热传递分析的理论模型.分析采用整体考虑的思路,避开了无基底FPA阵列各单元热传递互相影响所产生的复杂热分布分析,并考虑了框架对热量的吸收与传递.理论模型采用外边框与环境等温的边界条件,虽不及有限元方法对边界条件的处理灵活,但也已取 关键词: 光学读出 无基底 非制冷红外成像 焦平面阵列  相似文献   

2.
双材料微梁阵列室温物体红外成像   总被引:13,自引:0,他引:13       下载免费PDF全文
针对近年出现的新概念光学读出双材料微梁阵列红外成像技术,提出了具有热变形放大效果的无硅基底回折腿间隔镀金的微梁单元结构,并建立了其热机械模型,在模型分析基础上,成功的设计制作了100×100像素的焦平面阵列(focal plane array,FPA).在构建的红外成像系统中,实现了对室温物体——人体的热成像,噪声等效温度差约为200mK.实验结果与热机械模型的分析一致. 关键词: 非制冷红外成像 光学读出 双材料微梁阵列  相似文献   

3.
光学读出微梁阵列红外成像及性能分析   总被引:4,自引:0,他引:4       下载免费PDF全文
在构建的光学读出微梁阵列(焦平面阵列FPA)非制冷红外成像系统中,实现了无硅基底FPA置于空气中对人体的热成像. 通过FPA在不同真空度环境条件下的成像结果进行比较,分析了热导和系统噪声值随气压变化的关系,以及对系统成像性能的影响,并对气体分子热运动自由程大于空气传热层特征尺度时的气体热传导模型进行了修正分析和实验验证. 实验结果表明:FPA置于空气中时,气体分子撞击微梁引起的微梁反光板无序振动产生的光学读出噪声成为系统噪声的主要来源. 当真空度小于1Pa时,总热导和光学读出噪声值的变化都趋于平缓;当真空度小于10-2Pa时,空气热导的影响可忽略,总热导降低到微梁感热像素的辐射极限,光学读出噪声也降低到一极小值. 实验结果与理论分析相符合. 关键词: 非制冷红外成像 光学读出 双材料微梁阵列 热导  相似文献   

4.
毛亮  史海涛  程腾  欧毅  陈大鹏  张青川 《光学学报》2013,33(1):111001-68
光学读出红外热成像系统中,焦平面阵列(FPA)反光板的初始弯曲降低了系统的光学检测灵敏度。针对FPA的设计制作,提出了两种降低其反光板初始弯曲的优化设计方案:减薄反光板上金层厚度和制作带加强筋的反光板。在理论分析的基础上,设计制作了单元尺寸为200μm的反光板金层减薄FPA,其反光板曲率半径提高至原来金层未减薄FPA的4.71倍,系统光学检测灵敏度提高了5.2倍;单元尺寸为60μm的反光板带加强筋FPA,其反光板曲率半径提高至原来没有加强筋FPA的4.29倍,系统光学检测灵敏度提高了1.18倍。实验验证了理论分析的结果。  相似文献   

5.
提出了一种新的基于哈特曼波前传感器(SHWS)的光学读出系统.该系统利用SHWS探测焦平面阵列(FPA)单元在受热前后反射波前斜率的变化量重构被探测物体的红外辐射图像.在理论上详细讨论其成像性能后,实验获得了单元尺寸为60 μm×60 μm,阵列大小为34 pixel×38 pixel的高温物体红外图像,其噪声等效温度差(NETD)约为3.8 K.优化系统参数设计,可以提高哈特曼波前传感器对到达角的测量精度进而获得更小的噪声等效温度差.  相似文献   

6.
吴健雄  程腾  张青川  高杰  伍小平 《物理学报》2013,62(22):220703-220703
在光学读出红外成像的理论分析中, 通常将具有一定实际尺寸的非相干面光源简化为理想点光源, 导致了分析误差. 本文建立了面光源模型, 通过夫琅禾费衍射理论, 研究了面光源影响下的光学检测灵敏度, 发现了光学检测灵敏度随光源半径和焦平面阵列反光板长度的变化关系, 提出了面光源影响下的光源尺寸和反光板长度的优化设计准则. 针对理论分析, 进行了实验验证, 测试结果与理论分析一致. 关键词: 面光源 光学读出 焦平面阵列 非制冷红外成像  相似文献   

7.
冯飞  焦继伟  熊斌  王跃林 《光学学报》2004,24(10):375-1380
提出了一种新颖的基于硅基法布里珀罗微腔阵列的光读出红外热成像器件 ,该器件利用光学读出技术将红外图像直接转化为可见光图像 ,其焦平面阵列 (FPA)是一个基于微机电系统 (MEMS)制作的法布里珀罗微腔阵列。阐明了器件的工作原理 ;完成了可动微镜结构、热机械、可见光读出部分设计。理论分析表明 ,对Al/SiO2 双材料体系而言 ,SiO2 厚度应大于 0 .3μm ,其最佳厚度比为 0 .5 98,相应的最大热 机械灵敏度可达 10 -8m/K。采用体硅微机电系统技术 ,实验制作出了 5 0× 5 0焦平面阵列。  相似文献   

8.
本文对读出原理、像差要求、图谱质量进行深入研究,进而对读出技术进行深度整合与简化,实现光读出FPA红外成像系统小型化、轻量化、集成化。首先,从FPA的热-机械效应出发,介绍了光读出FPA红外成像系统的工作原理;然后,针对通常采用的光读出FPA红外成像系统体积大、重量大、结构复杂缺陷,提出了高集成度的新型光读出系统;接着,在分析讨论读出光路像差容限、特点的基础上,对以异形棱镜为核心元件的光读出系统进行了具体的光学仿真设计;最后,设计了集光、机、电、软技术的集成式光读出FPA红外成像系统。对系统样机测试结果表明:在确保成像性能的前提下,光读出FPA红外成像系统的体积减小到175 mm×83 mm×105 mm。以异形棱镜为核心元件的光读出技术,在满足成像精度和灵敏度的前提下,可减小读出系统的复杂程度,有效降低了光读出FPA红外成像系统的体积和重量,从而促进光读出FPA成像系统的工业化应用。  相似文献   

9.
红外焦平面探测器的读出电路   总被引:6,自引:0,他引:6  
王利平 《光学技术》2000,26(2):123-125
红外焦平面阵列是现代红外成像系统的关键元件 ,不论是混合式还是单片式红外焦平面阵列 ,都采用读出电路来实现信号的多路传输以减少阵列输出信号线的数目。论述了读出电路在焦平面信号传输中的作用 ;讨论了用于实现红外焦平面阵列读出电路的一些实施技术 ;提出了红外焦平面阵列读出电路今后的研究方向  相似文献   

10.
折/衍混合红外光学系统的消热差设计   总被引:2,自引:4,他引:2  
研究了衍射光学元件的温度特性以及混合红外光学系统的消热差设计方法.设计了工作在3.7~4.8μm,视场4.5°,具有100%冷光阑效率的折射/衍射混合红外光学系统.该系统在-30~70℃温度范围内成像质量接近衍射极限,可用于像元尺寸为30 μm的制冷型凝视焦平面阵列探测器上.  相似文献   

11.
程腾  张青川  陈大鹏  史海涛  高杰  钱剑  伍小平 《中国物理 B》2010,19(1):10701-010701
We propose a substrate-free focal plane array (FPA) in this paper. The solid substrate is completely removed, and the microcantilevers extend from a supporting frame. Using finite element analysis, the thermal and mechanical characterizations of the substrate-free FPA are presented. Because of the large decrease in thermal conductance, the supporting frame is temperature dependent, which brings out a unique feature: the lower the thermal conductance of the supporting frame is, the higher the energy conversion efficiency in the substrate-free FPA will be. The results from the finite element analyses are consistent with our measurements: two types of substrate-free FPAs with pixel sizes of 200× 200 and 60× 60~μ m2 are implemented in the proposed infrared detector. The noise equivalent temperature difference (NETD) values are experimentally measured to be 520 and 300~mK respectively. Further refinements are considered in various aspects, and the substrate-free FPA with a pixel size of 30× 30~μ m2 has a potential of achieving an NETD value of 10~mK.  相似文献   

12.
The increasing application of InGaAs short wave infrared (SWIR) focal plane arrays (FPAs) in low light level imaging requires ultra-low noise FPAs. This paper presents the theoretical analysis of FPA noise, and point out that both dark current and detector capacitance strongly affect the FPA noise. The impact of dark current and detector capacitance on FPA noise is compared in different situations. In order to obtain low noise performance FPAs, the demand for reducing detector capacitance is higher especially when pixel pitch is smaller, integration time is shorter, and integration capacitance is larger. Several InGaAs FPAs were measured and analyzed, the experiments’ results could be well fitted to the calculated results. The study found that the major contributor of FPA noise is coupled noise with shorter integration time. The influence of detector capacitance on FPA noise is more significant than that of dark current. To investigate the effect of detector performance on FPA noise, two kinds of photodiodes with different concentration of the absorption layer were fabricated. The detectors’ performance and noise characteristics were measured and analyzed, the results are consistent with that of theoretical analysis.  相似文献   

13.
We have exploited the artificial atom-like properties of epitaxially grown self-assembled quantum dots (QDs) for the development of high operating temperature long wavelength infrared (LWIR) focal plane arrays (FPAs). QD infrared photodetectors (QDIPs) are expected to outperform quantum well infrared detectors (QWIPs) and are expected to offer significant advantages over II–VI material based FPAs. We have used molecular beam epitaxy (MBE) technology to grow multi-layer LWIR dot-in-a-well (DWELL) structures based on the InAs/InGaAs/GaAs material system. This hybrid quantum dot/quantum well device offers additional control in wavelength tuning via control of dot-size and/or quantum well sizes. DWELL QDIPs were also experimentally shown to absorb both 45° and normally incident light. Thus we have employed a reflection grating structure to further enhance the quantum efficiency. The most recent devices exhibit peak responsivity out to 8.1 μm. Peak detectivity of the 8.1 μm devices has reached 1 × 1010 Jones at 77 K. Furthermore, we have fabricated the first long-wavelength 640 × 512 pixels QDIP imaging FPA. This QDIP FPA has produced excellent infrared imagery with noise equivalent temperature difference of 40 mK at 60 K operating temperature.  相似文献   

14.
Recent results obtained on building blocks for future third generation infrared focal plane arrays (FPAs) are presented. Our approach concerning the FPA performance assessment and small pixels modelling is exposed. We also demonstrate the ability of the quantum well infrared photodetector technology to answer the needs for compact (20 μm pitch) polarimetric FPAs. Finally, we present our first results on mid-wave infrared detectors at wavelengths below 4.2 μm.  相似文献   

15.
In the remarkably short span of 2 years, longwave infrared focal plane arrays (FPAs) of Type-II InAs/GaSb strained layer superlattice (SLS) photodiodes have advanced from 320 × 256 format to 1024 × 1024 format while simultaneously shrinking the pitch from 30 μm to 18 μm. Despite a dark current that is presently higher than state-of-the-art mercury cadmium telluride photodiodes with the same ∼10 μm cutoff wavelength, the high pixel operability and high (∼50%) quantum efficiency of SLS FPAs enable excellent imagery with temporal noise equivalent temperature difference better than 30 mK with F/4 optics, integration time less than 1 ms, and operating temperature of 77 K or colder. We present current FPA performance of this promising sensor technology.  相似文献   

16.
This paper reports the first demonstration of the megapixel-simultaneously-readable and pixel-co-registered dual-band quantum well infrared photodetector (QWIP) focal plane array (FPA). The dual-band QWIP device was developed by stacking two multi-quantum-well stacks tuned to absorb two different infrared wavelengths. The full width at half maximum (FWHM) of the mid-wave infrared (MWIR) band extends from 4.4 to 5.1 μm and the FWHM of a long-wave infrared (LWIR) band extends from 7.8 to 8.8 μm. Dual-band QWIP detector arrays were hybridized with custom fabricated direct injection read out integrated circuits (ROICs) using the indium bump hybridization technique. The initial dual-band megapixel QWIP FPAs were cooled to 70 K operating temperature. The preliminary data taken from the first megapixel QWIP FPA has shown system NEΔT of 27 and 40 mK for MWIR and LWIR bands, respectively.  相似文献   

17.
Third generation thermal imagers with dual/multi-band operation capability are the prominent focus of the current research in the field of infrared detection. Dual band quantum-well infrared photodetector (QWIP) focal plane arrays (FPAs) based on various detection and fabrication approaches have been reported. One of these approaches is the three-contact design allowing simultaneous integration of the signals in both bands. However, this approach requires three In bumps on each pixel leading to a complicated fabrication process and lower fill factor.If the spectral response of a two-stack QWIP structure can effectively be shifted between two spectral bands with the applied bias, dual band sensors can be implemented with the conventional FPA fabrication process requiring only one In bump on each pixel making it possible to fabricate large format dual band FPAs at the cost and yield of single band detectors. While some disadvantages of this technique have been discussed in the literature, the detailed assessment of this approach has not been performed at the FPA level yet. We report the characteristics of a large format (640 × 512) voltage tunable dual-band QWIP FPA constructed through series connection of MWIR AlGaAs–InGaAs and LWIR AlGaAs–GaAs multi-quantum well stacks, and provide a detailed assessment of the potential of this approach at both pixel and FPA levels. The dual band FPA having MWIR and LWIR cut-off wavelengths of 5.1 and 8.9 μm provided noise equivalent temperature differences as low as 14 and 31 mK (f/1.5) with switching voltages within the limits applicable by commercial read-out integrated circuits. The results demonstrate the promise of the approach for achieving large format low cost dual band FPAs.  相似文献   

18.
Alternative material systems on InP substrate provide certain advantages for mid-wavelength infrared (MWIR), long-wavelength infrared (LWIR) and dual band MWIR/LWIR quantum well infrared photodetector (QWIP) focal plane arrays (FPAs). While InP/InGaAs and InP/InGaAsP LWIR QWIPs provide much higher responsivity when compared to the AlGaAs/GaAs QWIPs, AlInAs/InGaAs system facilitates completely lattice matched single band MWIR and dual band MWIR/LWIR FPAs.We present an extensive review of the studies on InP based single and dual band QWIPs. While reviewing the characteristics of InP/InGaAs and InP/InGaAsP LWIR QWIPs at large format FPA level, we experimentally demonstrate that the cut-off wavelength of AlInAs/InGaAs QWIPs can be tuned in a sufficiently large range in the MWIR atmospheric window by only changing the quantum well (QW) width at the lattice matched composition. The cut-off wavelength can be shifted up to ~5.0 μm with a QW width of 22 Å in which case very broad spectral response (Δλ/λp = ~30%) and a reasonably high peak detectivity are achievable leading to a noise equivalent temperature difference as low as 14 mK (f/2) with 25 μm pitch in a 640 × 512 FPA. We also present the characteristics of InP based two-stack QWIPs with wavelengths properly tuned in the MWIR and LWIR bands for dual color detection. The results clearly demonstrate that InP based material systems display high potential for dual band MWIR/LWIR QWIP FPAs needed by third generation thermal imagers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号