首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Let A and B be non-negative self-adjoint operators in a separable Hilbert space such that their form sum C is densely defined. It is shown that the Trotter product formula holds for imaginary parameter values in the L 2-norm, that is, one has
$ \lim_{n\to+\infty} \int\limits^T_{-T} \left\|\left(e^{-itA/n}e^{-itB/n} \right)^nh - e^{-itC}h\right\|^2dt = 0 $
for each element h of the Hilbert space and any T > 0. This result is extended to the class of holomorphic Kato functions, to which the exponential function belongs. Moreover, for a class of admissible functions: \({\phi(\cdot),\psi(\cdot):{\mathbb R}_+ \longrightarrow {\mathbb C}}\), where \({{\mathbb R}_+ := [0,\infty)}\), satisfying in addition \({{\Re{\rm e}}\,(\phi(y))\ge 0, {\Im{\rm m}}\,(\phi(y) \le 0}\) and \({{\Im{\rm m}}\,(\psi(y)) \le 0}\) for \({y \in {\mathbb R}_+}\), we prove that
$ \,\mbox{\rm s-}\hspace{-2pt} \lim_{n\to\infty}(\phi(tA/n)\psi(tB/n))^n = e^{-itC} $
holds true uniformly on \({[0,T]\ni t}\) for any T > 0.
  相似文献   

2.
We study positive solutions of the following polyharmonic equation with Hardy weights associated to Navier boundary conditions on a half space:?????(-?)~mu(x)=u~p(x)/|x|~s,in R_+~n,u(x)=-?u(x)=…=(-?)~(m-1)u(x)=0,on ?R_+~n,(0.1)where m is any positive integer satisfying 02mn.We first prove that the positive solutions of(0.1)are super polyharmonic,i.e.,(-?)~iu0,i=0,1,...,m-1.(0.2) For α=2m,applying this important property,we establish the equivalence between (0.1) and the integral equation u(x)=c_n∫R_+~n(1/|x-y|~(n-α)-1/|x~*-y|~(n-α))u~p(y)/|y|~sdy,(0.3) where x~*=(x1,...,x_(n-1),-x_n) is the reflection of the point x about the plane R~(n-1).Then,we use the method of moving planes in integral forms to derive rotational symmetry and monotonicity for the positive solution of(0.3),in whichαcan be any real number between 0 and n.By some Pohozaev type identities in integral forms,we prove a Liouville type theorem—the non-existence of positive solutions for(0.1).  相似文献   

3.
We consider a complex symmetric sequence space E that possesses the Fatou property and is different from l2. We prove that, for every surjective linear isometry V on E, there exist λ n ∈ ? with |λ n | = 1 and a bijective mapping π on the set ? of natural numbers such that
$$V\left( {\left\{ {\xi _n } \right\}_{n \in \mathbb{N}} } \right) = \left\{ {\lambda _n \xi _{\pi (n)} } \right\}_{n \in \mathbb{N}}$$
for every {ξ n {n∈?E.
  相似文献   

4.
We consider the Schrödinger operator
$$ \text{-} \frac{d^{2}}{d x^{2}} + V {\text{on an interval}}~~[a,b]~{\text{with Dirichlet boundary conditions}},$$
where V is bounded from below and prove a lower bound on the first eigenvalue λ 1 in terms of sublevel estimates: if w V (y) = |{x ∈ [a, b] : V (x) ≤ y}|, then
$$\lambda_{1} \geq \frac{1}{250} \min\limits_{y > \min V}{\left( \frac{1}{w_{V}(y)^{2}} + y\right)}.$$
The result is sharp up to a universal constant if {x ∈ [a, b] : V(x) ≤ y} is an interval for the value of y solving the minimization problem. An immediate application is as follows: let \({\Omega } \subset \mathbb {R}^{2}\) be a convex domain and let \(u:{\Omega } \rightarrow \mathbb {R}\) be the first eigenfunction of the Laplacian ? Δ on Ω with Dirichlet boundary conditions on ?Ω. We prove
$$\| u \|_{L^{\infty}({\Omega})} \lesssim \frac{1}{\text{inrad}({\Omega})} \left( \frac{\text{inrad}({\Omega})}{\text{diam}({\Omega})} \right)^{1/6} \|u\|_{L^{2}({\Omega})},$$
which answers a question of van den Berg in the special case of two dimensions.
  相似文献   

5.
In the rectangle G = (0, 1) × (0, T), we consider the family of problems
$$\begin{gathered} \frac{1}{{a(x,t)}}\frac{{\partial u_\alpha }}{{\partial t}} - \frac{{\partial ^2 u_\alpha }}{{\partial x^2 }} = f(x,t), u_\alpha (x,0) = \phi _\alpha (x), u_\alpha (0,t) = 0, 0 \leqslant \alpha \leqslant 1, \hfill \\ u_0 (1,t) = h(t), \frac{{\partial u_1 (1,t)}}{{\partial x}} = h(t), \frac{{u_\alpha (1,t) - u_\alpha (\alpha ,t)}}{{1 - \alpha }} = h(t), 0 < \alpha < 1, \hfill \\ a_1 \geqslant a(x,t) \geqslant a_0 > 0, h \in W_2^1 (0,T), \phi _\alpha \in W_2^1 (0,T), \phi _\alpha (0) = 0, 0 \leqslant \alpha \leqslant 1, \hfill \\ \phi _0 (1) = h(0), \phi '_1 (1) = h(0), \frac{{\phi _\alpha (1) - \phi _\alpha (0)}}{{1 - \alpha }} = h(0), 0 < \alpha < 1, f \in L_2 (G) \hfill \\ \end{gathered} $$
. It is well known that, for α = 0 and α = 1, the corresponding problems with local conditions are solvable, and the solutions are unique and belong to W 2 2,1 (G).
We prove the existence and uniqueness of solutions of the family of problems with nonlocal conditions for each α ∈ (0, 1). For the differences u α ? u 0 and u α ? u 1 (0 < α < 1), we establish a priori estimates and use them to prove that if ? α ? 0 as α → 0, then u α u 0 and if ? α ? 1 as α → 1, then u α u 1.  相似文献   

6.
Let {x m } be a vector sequence that satisfies
$$\boldsymbol{x}_{m}\sim \boldsymbol{s}+\sum\limits^{\infty}_{i=1}\alpha_{i} \boldsymbol{g}_{i}(m)\quad\text{as \(m\to\infty\)}, $$
s being the limit or antilimit of {x m } and \(\{\boldsymbol {g}_{i}(m)\}^{\infty }_{i=1}\) being an asymptotic scale as m, in the sense that
$$\lim\limits_{m\to\infty}\frac{\|\boldsymbol{g}_{i+1}(m)\|}{\|\boldsymbol{g}_{i}(m)\|}=0,\quad i=1,2,\ldots. $$
The vector sequences \(\{\boldsymbol {g}_{i}(m)\}^{\infty }_{m=0}\), i = 1, 2,…, are known, as well as {x m }. In this work, we analyze the convergence and convergence acceleration properties of a vectorized version of the generalized Richardson extrapolation process that is defined via the equations
$$\sum\limits^{k}_{i=1}\langle\boldsymbol{y},{\Delta}\boldsymbol{g}_{i}(m)\rangle\widetilde{\alpha}_{i}=\langle\boldsymbol{y},{\Delta}\boldsymbol{x}_{m}\rangle,\quad n\leq m\leq n+k-1;\quad \boldsymbol{s}_{n,k}=\boldsymbol{x}_{n}+\sum\limits^{k}_{i=1}\widetilde{\alpha}_{i}\boldsymbol{g}_{i}(n), $$
s n, k being the approximation to s. Here, y is some nonzero vector, 〈? ,?〉 is an inner product, such that \(\langle \alpha \boldsymbol {a},\beta \boldsymbol {b}\rangle =\overline {\alpha }\beta \langle \boldsymbol {a},\boldsymbol {b}\rangle \), and Δx m = x m + 1? x m and Δg i (m) = g i (m + 1)?g i (m). By imposing a minimal number of reasonable additional conditions on the g i (m), we show that the error s n, k ? s has a full asymptotic expansion as n. We also show that actual convergence acceleration takes place, and we provide a complete classification of it.
  相似文献   

7.
For any x ?? (0, 1], let the series \( {\sum}_{n=1}^{\infty }1/{d}_n(x) \) be the Sylvester expansion of x, where {d j (x),?j?≥?1} is a sequence of positive integers satisfying d1(x)?≥?2 and dj?+?1(x)?≥?d j (x)(d j (x)???1)?+?1 for j?≥?1. Suppose ? : ? → ?+ is a function satisfying ?(n+1) – ? (n) → ∞ as n → ∞. In this paper, we consider the set
$$ E\left(\phi \right)=\left\{x\kern0.5em \in \left(0,1\right]:\kern0.5em \underset{n\to \infty }{\lim}\frac{\log {d}_n(x)-{\sum}_{j=1}^{n-1}\log {d}_j(x)}{\phi (n)}=1\right\} $$
and quantify the size of the set in the sense of Hausdorff dimension. As applications, for any β > 1 and γ > 0, we get the Hausdorff dimension of the set \( \left\{x\in \kern1em \left(0,1\right]:\kern0.5em {\lim}_{n\to \infty}\left(\log {d}_n(x)-{\sum}_{j=1}^{n-1}\log {d}_j(x)\right)/{n}^{\beta }=\upgamma \right\}, \) and for any τ > 1 and η > 0, we get a lower bound of the Hausdorff dimension of the set \( \left\{x\kern0.5em \in \kern0.5em \left(0,1\right]:\kern1em {\lim}_{n\to \infty}\left(\log {d}_n(x)-{\sum}_{j=1}^{n-1}\log {d}_j(x)\right)/{\tau}^n=\eta \right\}. \)  相似文献   

8.
Suppose β1 α1 ≥0,β2 α2 ≥ 0 and(k,j) ∈R2. In this paper, we mainly investigate the mapping properties of the operator T_αβf(x,y,z)=∫_Q~2f(x-t,y-s,z-t~ks~j)e~(-2πit-β1_s-β2)t~(-1-α1)s~(-1-α2)dtds on modulation spaces, where Q~2 = [0,1] x [0,1] is the unit square in two dimensions.  相似文献   

9.
In this paper we investigate the L 2-solutions of vector refinement equations with polynomially decaying masks and a general dilation matrix, which plays a vital role for characterizations of wavelets and biorthogonal wavelets with infinite support. A vector refinement equation with polynomially decaying masks and a general dilation matrix is the form:
$ \phi(x)=\sum_{\alpha\in\Bbb Z^s}a(\alpha)\medspace\phi(Mx-\alpha),\quad x\in\Bbb R^s, $
where the vector of functions \(\phi=(\phi_{1},\cdots,\phi_{r})^{T}\) is in \((L_{2}(\Bbb R^s))^{r},\) \(a:=(a(\alpha))_{\alpha\in\Bbb Z^s}\) is a polynomially decaying sequence of r×r matrices called refinement mask and M is an s×s integer matrix such that \(\lim_{n\to\infty}M^{-n}=0.\) The corresponding cascade operator on \((L_2(\Bbb R^s))^r\) is given by:
$ Q_{a}f(x):=\sum_{\alpha\in\Bbb Z^s}a(\alpha)f(Mx-\alpha),\quad x\in\Bbb R^s, \quad f=(f_1,...,f_r)^T\in (L_2(\Bbb R^s))^r. $
The iterative scheme \((Q_a^nf)_{n=1,2,\cdots,}\) is called vector cascade algorithm. In this paper we give a complete characterization of convergence of the sequence \((Q_a^nf)_{n=1,2\cdots}\) in L 2-norm. Some properties of the transition operator restricted to a certain linear space are discussed. As an application of convergence, we also obtain a characterization of smoothness of solutions of refinement equation mentioned above for the case r?=?1.
  相似文献   

10.
We prove the conditional exponential stability of the zero solution of the nonlinear differential system
$$\dot y = A(t)y + f(t,y),{\mathbf{ }}y \in R^n ,{\mathbf{ }}t \geqslant 0,$$
with L p -dichotomous linear Coppel-Conti approximation .x = A(t)x whose principal solution matrix X A (t), X A (0) = E, satisfies the condition
$$\mathop \smallint \limits_0^t \left\| {X_A (t)P_1 X_A^{ - 1} (\tau )} \right\|^p d\tau + \mathop \smallint \limits_t^{ + \infty } \left\| {X_A (t)P_2 X_A^{ - 1} (\tau )} \right\|^p d\tau \leqslant C_p (A) < + \infty ,{\mathbf{ }}p \geqslant 1,{\mathbf{ }}t \geqslant 0,$$
where P 1 and P 2 are complementary projections of rank k ∈ {1, …, n ? 1} and rank n ? k, respectively, and with a higher-order infinitesimal perturbation f:[0, ∞) × UR n that is piecewise continuous in t ≥ 0 and continuous in y in some neighborhood U of the origin.
  相似文献   

11.
We consider a bulk charge potential of the form
$$u(x) = \int\limits_\Omega {g(y)F(x - y)dy,x = ({x_1},{x_2},{x_3}) \in {\mathbb{R}^3},} $$
where Ω is a layer of small thickness h > 0 located around the midsurface Σ, which can be either closed or open, and F(x ? y) is a function with a singularity of the form 1/|x ? y|. We prove that, under certain assumptions on the shape of the surface Σ, the kernel F, and the function g at each point x lying on the midsurface Σ (but not on its boundary), the second derivatives of the function u can be represented as
$$\frac{{{\partial ^2}u(x)}}{{\partial {x_i}\partial {x_j}}} = h\int\limits_\Sigma {g(y)\frac{{{\partial ^2}F(x - y)}}{{\partial {x_i}\partial {x_j}}}} dy - {n_i}(x){n_j}(x)g(x) + {\gamma _{ij}}(x),i,j = 1,2,3,$$
where the function γij(x) does not exceed in absolute value a certain quantity of the order of h2, the surface integral is understood in the sense of Hadamard finite value, and the ni(x), i = 1, 2, 3, are the coordinates of the normal vector on the surface Σ at a point x.
  相似文献   

12.
For the nonautonomous Lotka-Volterra model
$\dot x = \alpha (t)(x - M^{ - 1} x^2 - K^{ - 1} (x - \phi (x,y))y),\dot y = \beta (t)y(L^{ - 1} (x - \phi (x,y)) - 1),$
where some part φ(x, y) of the prey population is out of reach of the predator, we obtain sufficient conditions for the existence of a positive asymptotically stable equilibrium in the domain of admissible values of the variables x and y. We consider the cases in which φ(x, y) = m, φ(x, y) = mx, and φ(x, y) = my.
  相似文献   

13.
Li Zhang  Weigao Ge 《Acta Appl Math》2010,110(3):1237-1248
The purpose of this paper is to use a three critical point theorem due to Ricceri to obtain the existence of at least three solutions for the following Sturm–Liouville boundary value problem with impulses
$\begin{cases}(\phi_{p}(x'(t)))'=(a(t)\phi_{p}(x)+\lambda f(t,x)+\mu h(x))g(x'(t)),\quad \mbox{a.e. }t\in[0,1],\\\Delta G(x'(t_{i}))=I_{i}(x(t_{i})),\quad i=1,2,\ldots,k,\\\alpha_{1}x(0)-\alpha_{2}x'(0)=0,\\\beta_{1}x(1)+\beta_{2}x'(1)=0,\end{cases}$
where p>1, φ p (x)=|x|p?2 x, λ, μ are positive parameters, \(G(x)=\int_{0}^{x}\frac{(p-1)|s|^{p-2}}{g(s)}\,ds\). The interest is that the nonlinear term includes x′. We exhibit the existence of at least three solutions and h(x) can be an arbitrary C 1 functional with compact derivative. As an application, an example is given to illustrate the results.
  相似文献   

14.
We study the operator-valued positive dyadic operator
$${T_\lambda }\left( {f\sigma } \right): = \sum\limits_{Q \in D} {{\lambda _Q}} \int_Q {fd\sigma 1Q}, $$
where the coefficients {λ Q : CD} QD are positive operators from a Banach lattice C to a Banach lattice D. We assume that the Banach lattices C and D* each have the Hardy–Littlewood property. An example of a Banach lattice with the Hardy–Littlewood property is a Lebesgue space.
In the two-weight case, we prove that the L C p (σ) → L D q (ω) boundedness of the operator T λ( · σ) is characterized by the direct and the dual L testing conditions:
$$\left\| {{1_Q}{T_\lambda }} \right\|{\left( {{1_Q}f\sigma } \right)||_{L_D^q\left( \omega \right)}} \lesssim {\left\| f \right\|_{L_C^\infty \left( {Q,\sigma } \right)}}\sigma {\left( Q \right)^{1/p}}$$
,
$${\left\| {{1_Q}{T_\lambda }*\left( {{1_{Qg\omega }}} \right)} \right\|_{L_{C*}^{p'}\left( \sigma \right)}} \lesssim {\left\| g \right\|_{L_{D*}^\infty \left( {Q,\omega } \right)}}\omega {\left( Q \right)^{1/q'}}$$
.
Here L C p (σ) and L D q (ω) denote the Lebesgue–Bochner spaces associated with exponents 1 < pq < ∞, and locally finite Borel measures σ and ω.
In the unweighted case, we show that the L C p (μ) → L D p (μ) boundedness of the operator T λ( · μ) is equivalent to the end-point direct L testing condition:
$${\left\| {{1_Q}{T_\lambda }\left( {{1_Q}f\mu } \right)} \right\|_{L_D^1\left( \mu \right)}} \lesssim {\left\| f \right\|_{L_C^\infty \left( {Q,\mu } \right)}}\left( {Q,\mu } \right)\mu \left( Q \right)$$
.
This condition is manifestly independent of the exponent p. By specializing this to particular cases, we recover some earlier results in a unified way.  相似文献   

15.
Let L be a Schrdinger operator of the form L =-? + V acting on L~2(R~n), n≥3, where the nonnegative potential V belongs to the reverse Hlder class B_q for some q≥n. Let BMO_L(R~n) denote the BMO space associated to the Schrdinger operator L on R~n. In this article, we show that for every f ∈ BMO_L(R~n) with compact support, then there exist g ∈ L~∞(R~n) and a finite Carleson measure μ such that f(x) = g(x) + S_(μ,P)(x) with ∥g∥∞ + |||μ|||c≤ C∥f∥BMO_L(R~n), where S_(μ,P)=∫(R_+~(n+1))Pt(x,y)dμ(y, t),and Pt(x, y) is the kernel of the Poisson semigroup {e-~(t(L)~(1/2))}t0 on L~2(R~n). Conversely, if μ is a Carleson measure, then S_(μ,P) belongs to the space BMO_L(R~n). This extends the result for the classical John-Nirenberg BMO space by Carleson(1976)(see also Garnett and Jones(1982), Uchiyama(1980) and Wilson(1988)) to the BMO setting associated to Schrdinger operators.  相似文献   

16.
For the number n s , β; X) of points (x 1 , x 2) in the two-dimensional Fibonacci quasilattices \( \mathcal{F}_m^2 \) of level m?=?0, 1, 2,… lying on the hyperbola x 1 2 ? ??αx 2 2 ?=?β and such that 0?≤?x 1? ≤?X, x 2? ?0, the asymptotic formula
$ {n_s}\left( {\alpha, \beta; X} \right)\sim {c_s}\left( {\alpha, \beta } \right)\ln X\,\,\,\,{\text{as}}\,\,\,\,X \to \infty $
is established, and the coefficient c s (α, β) is calculated exactly. Using this, we obtain the following result. Let F m be the Fibonacci numbers, A i \( \mathbb{N} \), i?=?1, 2, and let \( \overleftarrow {{A_i}} \) be the shift of A i in the Fibonacci numeral system. Then the number n s (X) of all solutions (A 1 , A 2) of the Diophantine system
$ \left\{ {\begin{array}{*{20}{c}} {A_1^2 + \overleftarrow {A_1^2} - 2{A_2}{{\overleftarrow A }_2} + \overleftarrow {A_2^2} = {F_{2s}},} \\ {\overleftarrow {A_1^2} - 2{A_1}{{\overleftarrow A }_1} + A_2^2 - 2{A_2}{{\overleftarrow A }_2} + 2\overleftarrow {A_2^2} = {F_{2s - 1}},} \\ \end{array} } \right. $
0?≤?A 1? ≤?X, A 2? ?0, satisfies the asymptotic formula
$ {n_s}(X)\sim \frac{{{c_s}}}{{{\text{ar}}\cosh \left( {{{1} \left/ {\tau } \right.}} \right)}}\ln X\,\,\,\,{\text{as}}\,\,\,\,X \to \infty . $
Here τ?=?(?1?+?5)/2 is the golden ratio, and c s ?=?1/2 or 1 for s?=?0 or s?≥?1, respectively.
  相似文献   

17.
We present simple proofs of a result of L.D. Pustylnikov extending to nonautonomous dynamics the Siegel theorem of linearization of analytic mappings. We show that if a sequence f n of analytic mappings of C d has a common fixed point f n (0) = 0, and the maps f n converge to a linear mapping A∞ so fast that
$$\sum\limits_n {{{\left\| {{f_m} - {A_\infty }} \right\|}_{L\infty \left( B \right)}} < \infty } $$
$${A_\infty } = diag\left( {{e^{2\pi i{\omega _1}}},...,{e^{2\pi i{\omega _d}}}} \right)\omega = \left( {{\omega _1},...,{\omega _q}} \right) \in {\mathbb{R}^d},$$
then f n is nonautonomously conjugate to the linearization. That is, there exists a sequence h n of analytic mappings fixing the origin satisfying
$${h_{n + 1}} \circ {f_n} = {A_\infty }{h_n}.$$
The key point of the result is that the functions hn are defined in a large domain and they are bounded. We show that
$${\sum\nolimits_n {\left\| {{h_n} - Id} \right\|} _{L\infty (B)}} < \infty .$$
We also provide results when f n converges to a nonlinearizable mapping f∞ or to a nonelliptic linear mapping. In the case that the mappings f n preserve a geometric structure (e. g., symplectic, volume, contact, Poisson, etc.), we show that the hn can be chosen so that they preserve the same geometric structure as the f n . We present five elementary proofs based on different methods and compare them. Notably, we consider the results in the light of scattering theory. We hope that including different methods can serve as an introduction to methods to study conjugacy equations.
  相似文献   

18.
This paper describes the interaction of two solitons with nearly equal speeds for the quartic (gKdV) equation
$\partial_tu+\partial_x(\partial_x^2u+u^4)=0,\quad t,x\in \mathbb{R}.$
(0.1)
We call soliton a solution of (0.1) of the form u(t,x)=Q c (x?ct?y 0), where c>0, y 0∈? and \(Q_{c}''+Q_{c}^{4}=cQ_{c}\). Since (0.1) is not an integrable model, the general question of the collision of two given solitons \(Q_{c_{1}}(x-c_{1}t)\), \(Q_{c_{2}}(x-c_{2}t)\) with c 1c 2 is an open problem.
We focus on the special case where the two solitons have nearly equal speeds: let U(t) be the solution of (0.1) satisfying
$\lim_{t\to-\infty}\|{U}(t)-Q_{c_1^-}(.-c_1^-t)-Q_{c_2^-}(.-c_2^-t)\|_{H^1}=0,$
for \(\mu_{0}=(c_{2}^{-}-c_{1}^{-})/(c_{1}^{-}+c_{2}^{-})>0\) small. By constructing an approximate solution of (0.1), we prove that, for all time t∈?,
$\begin{array}{l}\displaystyle{U}(t)={Q}_{c_1(t)}(x-y_1(t))+{Q}_{c_2(t)}(x-y_2(t))+{w}(t)\\[6pt]\displaystyle\quad\mbox{where }\|w(t)\|_{H^1}\leq|\ln\mu_0|\mu_0^2,\end{array}$
with y 1(t)?y 2(t)>2|ln?μ 0|+C, for some C∈?. These estimates mean that the two solitons are preserved by the interaction and that for all time they are separated by a large distance, as in the case of the integrable KdV equation in this regime.
However, unlike in the integrable case, we prove that the collision is not perfectly elastic, in the following sense, for some C>0,
$\lim_{t\to+\infty}c_1(t)>c_2^-\biggl(1+\frac{\mu_0^5}{C}\biggr),\quad \lim_{t\to+\infty}c_2(t)
and \({w}(t)\not\to0\) in H 1 as t→+∞.
  相似文献   

19.
Let (X, d) be a compact metric and 0 < α < 1. The space Lip α (X) of Hölder functions of order α is the Banach space of all functions ? from X into \(\mathbb{K}\) such that ∥?∥ = max{∥?∥, L(?)} < ∞, where
$L(f) = sup\{ \left| {f(x) - f(y)} \right|/d^\alpha (x,y):x,y \in X, x \ne y\} $
is the Hölder seminorm of ?. The closed subspace of functions ? such that
$\mathop {\lim }\limits_{d(x,y) \to 0} \left| {f(x) - f(y)} \right|/d^\alpha (x,y) = 0$
is denoted by lip α (X). We determine the form of all bijective linear maps from lip α (X) onto lip α (Y) that preserve the Hölder seminorm.
  相似文献   

20.
We count the number S(x) of quadruples \( {\left( {x_{1} ,x_{2} ,x_{3} ,x_{4} } \right)} \in \mathbb{Z}^{4} \) for which
$ p = x^{2}_{1} + x^{2}_{2} + x^{2}_{3} + x^{2}_{4} \leqslant x $
is a prime number and satisfying the determinant condition: x 1 x 4???x 2 x 3?=?1. By means of the sieve, one shows easily the upper bound S(x)???x/log x. Under a hypothesis about prime numbers, which is stronger than the Bombieri–Vinogradov theorem but is weaker than the Elliott–Halberstam conjecture, we prove that this order is correct, that is S(x)???x/log x.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号