首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The influence of the vapors ofn-amyl orn-decyl alcohol on the stability of single thin liquid films, single bubbles, and foam columns was determined. It was found that the presence of surfactant vapors lowered the stability of foams and single foam films. The mechanism of the destabilizing action of the surfactant vapors on wet, dynamic foams under dynamic conditions is discussed. It is shown that the destabilizing action of the surfactant vapors is a further indication that surface elasticity forces are the main factor determining stability of wet, dynamic foams.  相似文献   

2.
Formation of films possessing a layered or stratified structure has been observed with foam films from liquid crystals, from concentrated surfactant solutions and in liquid layers on the surface of water. The stratifying films have a structure similar to that of the smectic phase which soaps are known to form in the bulk solution at high concentrations. The repeating units of which such films are built are the so-called black films: each unit consists of two surfactant layers interleaved by a thin aqueous core. In the study presented here we have observed that stratification can also take place in emulsion films from concentrated aqueous surfactant solutions. We have compared these results with those obtained for foam films using the same surfactant, i.e. sodium dodecylsulfate.  相似文献   

3.
The stability of foams formed with the protein β-lactoglobulin as a function of increasing concentration of the lipid analogue -α-lysophosphatidylcholine were investigated using a microconductivity technique. The drainage, surface diffusion and thickness properties of thin liquid films (foam lamallae) were also studied using optical microscopy including epi-illumination, fluorescence recovery after photobleaching and film interferometry techniques. In addition, the surfactant binding properties of the protein were examined. The addition of small quantities of -α-lysophosphatidylcholine to β-lactoglobulin (molar ratio, R < 7:1) increased the foam stability, whereas a slightly higher concentration of surfactant in the mixture (R = 10) caused foam destabilisation. The explanation of these observations is based on changes in the composition and structure of the adsorbed interfacial layers of the thin films caused by competitive displacement of the protein by the surfactant.  相似文献   

4.
A theoretical and numerical model is presented for the shape evolution of the thin liquid films separating the gas bubbles in a foam. The motion is due to capillary action, surface tension gradients, and the overall expansion of the foam. The expansion is the result of the increase in gas content with time. Process modeling is accomplished via the solution of three coupled partial differential equations. Two time scales are included in the model: a process time and a drying or curing time. It is demonstrated that the amount of surfactant is the dominant control mechanism for the final film thickness. If sufficient surfactant is present, the films will be shown to dilate uniformly in space. A number of known features of expanding foams are reproduced by the model.  相似文献   

5.
A summary of recent theoretical work on the decay of foams is presented. In a series of papers, we have proposed models for the drainage, coalescence and collapse of foams with time. Each of our papers dealt with a different aspect of foam decay and involved several assumptions. The fundamental equations, the assumptions involved and the results obtained are discussed in detail and presented within a unified framework.Film drainage is modeled using the Reynolds equation for flow between parallel circular disks and film rupture is assumed to occur when the film thickness falls below a certain critical thickness which corresponds to the maximum disjoining pressure. Fluid flow in the Plateau border channels is modeled using a Hagen-Poiseuille type flow in ducts with triangular cross-section.The foam is assumed to be composed of pentagonal dodecahedral bubbles and global conservation equations for the liquid, the gas and the surfactant are solved to obtain information about the state of the decaying foam as a function of time. Homogeneous foams produced by mixing and foams produced by bubbling (pneumatic foams) are considered. It is shown that a draining foam eventually arrives at a mechanical equilibrium when the opposing forces due to gravity and the Plateau-border suction gradient balance each other. The properties of the foam in this equilibrium state can be predicted from the surfactant and salt concentration in the foaming solution, the density of the liquid and the bubble radius.For homogeneous foams, it is possible to have conditions under which there is no drainage of liquid from the foam. There are three possible scenarios at equilibrium: separation of a single phase (separation of the continuous phase liquid by drainage or separation of the dispersed phase gas via collapse), separation of both phases (drainage and collapse occurs) or no phase separation (neither drainage nor collapse occurs). It is shown that the phase behavior depends on a single dimensionless group which is a measure of the relative magnitudes of the gravitational and capillary forces. A generalized phase diagram is presented which can be used to determine the phase behavior.For pneumatic foams, the effects of various system parameters such as the superficial gas velocity, the bubble size and the surfactant and salt concentrations on the rate of foam collapse and the evolution of liquid fraction profile are discussed. The steady state height attained by pneumatic foams when collapse occurs during generation is also evaluated.Bubble coalescence is assumed to occur due to the non-uniformity in the sizes of the films which constitute the faces of the polyhedral bubbles. This leads to a non-uniformity of film-drainage rates and hence of film thicknesses within any volume element in the foam. Smaller films drain faster and rupture earlier, causing the bubbles containing them to coalesce. This leads to a bubble size distribution in the foam, with the bubbles being larger in regions where greater coalescence has occurred.The formation of very stable Newton black films at high salt and surfactant concentrations is also explained.  相似文献   

6.
Thermodynamic treatment of surfactant mixture was developed for the adsorption at interfaces of thin liquid films and applied to the study of the foam film stabilized by decyl methyl sulfoxide (DeMS) in the presence of NaCl. The total surface density of NaCl and DeMS and the mole fraction of DeMS in the adsorbed film at the film surface were numerically evaluated by applying thermodynamic equations to the film tension as a function of the total molality of NaCl and DeMS and the mole fraction of DeMS in the mixture. Miscibility of NaCl and DeMS at the film surface was clarified by a phase diagram of adsorption and compared with that at the meniscus adjacent to the foam film. Judging from a phase diagram of phase transition, the transition in the DeMS foam film between common black and Newton black films, observed in part II, is a negative azeotropic transformation caused by the attractive interaction between the head group of DeMS molecule and Na+ or Cl in the adsorbed film.  相似文献   

7.
In this review the rupture and permeability of bilayers are considered on the basis of a mechanism of the formation of microscopic holes as fluctuations in the bilayers. The hole formation is treated as a nucleation process of a new phase in a two-dimensional system with short-range intermolecular forces. Free rupture and deliberate rupture (by α-particles) of foam bilayers (Newtonian black films) are discussed. A comparison is made between the rupture of foam and emulsion bilayers. Experimental methods for obtaining foam and emulsion bilayers from thin liquid films are considered. Methods for investigating the stability and permeability of foam bilayers, which are based on a microscopic model allowing the use of amphiphile solutions with very low concentrations, are described. Experimental dependences of the lifetime of bilayers, the probability of observing the foam bilayer in a foam film, the gas permeability of bilayers, etc. on the concentration of amphiphile molecules in the solution are reported. The influence of temperature and external impact (e.g. α-particle irradiation) have also been experimentally studied. A good agreement between theory and experiment is established, allowing determination of several characteristics of foam and emulsion bilayers obtained from ionics or non-ionics: the specific edge energy of bilayer holes, equilibrium surfactant concentration below which the bilayer is thermodynamically metastable, work for the formation of a nucleus hole, number of vacancies in the nucleus hole, coefficient of gas diffusion through the bilayer, etc. On the basis of the effect of temperature on the rupture of foam bilayers the binding energy of a surfactant molecule in the bilayer is determined. The adsorption isotherm of surfactant vacancies in the foam bilayer is obtained which shows a first-order phase transition. Some applications to scientific, technological and medical problems are considered. The foam bilayer is used as a model for investigating short-range forces in biological structures, the interaction between membranes and cell fusion. It is also shown that the foam bilayer is a suitable model for studying the alveolar surface and stability. On that basis a clinical diagnostic method is developed for assessment of the human foetal lung maturity.  相似文献   

8.
Foam films and wetting films on quartz formed from aqueous solutions of cetyltrimethylammonium bromide (CTAB) are investigated in a wide range of surfactant concentrations in the presence of background electrolyte (5 × 10–4 mol dm–3 NaCl). Foam and wetting films are convenient models for the study of symmetric (free thin liquid films) and asymmetric (thin liquid films on solid substrate) films with the same air/solution interface. Microinterferometric methods of assessment of foam and wetting films are used which allow precise determination of the film thickness. Determined are the values of the potential 0 of the diffuse electrical layer at the solution/air interface (applying the method of equilibrium foam films) and the potential 1 at the solution/quartz interface (applying the method of capillary electrokinetics). These values are used to analyze the stability of the films studied in terms of the DLVO theory. A conclusion drawn is that both kinds of films studied are stabilized by electrostatic interaction forces. It is shown that with increasing CTAB concentration, a charge reversal occurs at both the solution/air and solution/quartz interfaces which determines the stability/instability conditions of the foam and wetting films. Concentration ranges where both kinds of films produce stable (equilibrium) films are found. There are also concentration ranges where the films either rupture or are metastable (quasi-equilibrium). The CTAB concentration ranges, which provide the formation of unstable (rupturing and metastable) and stable films, are different for symmetric (foam) and asymmetric (wetting) thin liquid films. It is only at high CTAB concentrations (higher that >2 × 10–4 mol dm–3) that both cases render formation of stable equilibrium films. These studies give direct experimental indications that the electrostatic interactions between identical or different interfaces can differ when the surfactant concentration is varied.  相似文献   

9.
The thickness h of foam films can be measured as a function of the disjoining pressure Pi using a thin film pressure balance. Experimental Pi-h curves of foam films stabilized with nonionic surfactants measured at various concentrations resemble the p-V(m) isotherms of real gases measured at various temperatures (p is the pressure and V(m) is the molar volume of the gas). This observation led us to adopt the van der Waals approach for describing real gases to thin foam films, where the thickness h takes the role of V(m) and the disjoining pressure Pi replaces the ordinary pressure p. Our analysis results in a phase diagram for a thin foam film with spinodal, binodal as well as a critical point. The thicker common black film corresponds to the gas phase and the compact Newton black film for which the two surfaces are in direct contact corresponds to the dense liquid. We show that the tuning parameter for the phase behavior of the film is the surface charge density, which means that Pi-h curves should not be referred to as isotherms. In addition to the equilibrium properties the driving force for the phase transition from a common black film to a Newton black film or vice versa is calculated. We discuss how this transition can be controlled experimentally.  相似文献   

10.
The aim of this paper is to provide a perspective on the effect of gas type on the permeability of foam films stabilized by different types of surfactant and to present a critical overview of the tracer gas experiments, which is the common approach to determine the trapped fraction of foam in porous media. In these experiments some part of the gas is replaced by a "tracer gas" during the steady-state stage of the experiments and trapped fraction of foam is determined by fitting the effluent data to a capacitance mass-transfer model. We present the experimental results on the measurement of the gas permeability of foam films stabilized with five surfactants (non-ionic, anionic and cationic) and different salt concentrations. The salt concentrations assure formation of either common black (CBF) or Newton black films (NBF). The experiments are performed with different single gasses. The permeability of the CBF is in general higher than that of the NBF. This behavior is explained by the higher density of the surfactant molecules in the NBF compared to that of CBF. It is also observed that the permeability coefficient, K(cm/s), of CBF and NBF for non-ionic and cationic surfactants are similar and K is insensitive to film thickness. Compared to anionic surfactants, the films made by the non-ionic surfactant have much lower permeability while the films made by the cationic surfactant have larger permeability. This conclusion is valid for all gasses. For all types of surfactant the gas permeability of foam film is largely dependent on the dissolution of gas in the surfactant solution and increases with increasing gas solubility in the bulk liquid. The measured values of K are consistent with rapid diffusion of tracer gasses through trapped gas adjacent to flowing gas in porous media, and difficulties in interpreting the results of tracer-foam experiments with conventional capacitance models. The implications of the results for foam flow in porous media and factors leading to difficulties in the modeling of trapped fraction of foam are discussed in detail. To avoid complications in the interpretation of the results, the best tracer would be one with a permeability close to the permeability of the gas in the foam. This puts a lower limit on the effective diffusion coefficient for tracer in an experiment.  相似文献   

11.
12.
The synthesis and characterisation of hybrid organic-inorganic mesoporous thin films made from organosiloxane precursors are presented. Three-dimensional mesostructures (P63/mmc, Pm3n) have been obtained and their formation is related to dip coating conditions and sol compositions. Calcination at moderate temperatures allows the removal of the templating surfactant without destroying the organic functions covalently bonded to the porous network.  相似文献   

13.
Major recent advances include the development of new experimental techniques that enabled the first precise measurements of interfacial widths at water–oil interfaces and of the ordering of surfactants adsorbed to these interfaces, studies of phase transitions and domain formation in surfactant monolayers, and studies of interfacial fluctuations confined by and coupled across thin liquid films.  相似文献   

14.
The charge distribution and coverage with surfactant molecules at foam film surfaces plays an important role in determining foam film structure and stability. This work uses the concentration depth profiling technique neutral impact collision ion scattering spectroscopy to experimentally observe the charge distribution in a foam film for the first time. The charge distribution at the surface of a foam film and the surface of the corresponding bulk liquid were measured for a cationic surfactant solution and the surface excess as well as the electric potential were determined. Describing the internal pressure of foam films by using the electrochemical potential is introduced as a new concept. The foam film can be seen to have a more negative surface charge compared to the bulk liquid surface due to re‐arranging of the surfactant molecules. It is discussed how the change in surface excess and electric potential change the electrochemical potential and the stability of the foam film.  相似文献   

15.
Recently we constructed phase diagrams for thin foam films stabilized by a nonionic surfactant. The idea was born by synopsis of various disjoining pressure (pi) versus thickness (h) curves of foam films resembling p-Vm isotherms of real gases. The new concept of interpreting the pi-h curves of foam films in terms of phase diagrams allows us to describe experimental observations much more precisely. Three logical consequences will be discussed here to illustrate the strength of this approach. First, the observation is explained that common black films (CBF) rupture or form a Newton black film (NBF) within a certain pressure range rather than at a defined pressure. Both observations can be rationalized by invoking a nucleation process of holes or of the thinner NBF, respectively, in close analogy to the vapor to liquid condensation. Second, the question whether the CBF to NBF transition is discrete or continuous is answered by analyzing under which conditions the supercritical state of a foam film can be reached. Third, the evidence of corresponding states is discussed.  相似文献   

16.
The analysis of processes taking place in a steady pneumatic (dynamic) foam shows the possibility of different modes of surfactant accumulation within the top layers of bubbles due to rupture of external foam films. An increasing surfactant concentration within the top layers promotes the stabilisation of bubbles and the foam as a whole. Considering the balance of surfactant and water during the bursting of films it is possible to estimate the accumulated surfactant loss caused by a downwards flow through the Plateau borders of the subsurface bubble layer. This effect depends on the particular conditions, especially on the surfactant activity and concentration of the surfactant, water volume fraction in the foam and size of foam bubbles. The process of surfactant accumulation in the top foam bubble layer can be complicated due to the removal of part of the accumulated surfactant through transport with droplets spread out during bubble bursting.  相似文献   

17.
A new class of surfactant mixtures is described, which is particularly suitable for studies related to foam dynamics, such as studies of foam rheology, liquid drainage from foams and foam films, and bubble coarsening and rearrangement. These mixtures contain an anionic surfactant, a zwitterionic surfactant, and fatty acids (e.g., myristic or lauric) of low concentration. Solutions of these surfactant mixtures exhibit Newtonian behavior, and their viscosity could be varied by using glycerol. Most importantly, the dynamic surface properties of these solutions, such as their surface dilatational modulus, strongly depend on the presence and on the chain-length of fatty acid(s). Illustrative results are shown to demonstrate the dependence of solution properties on the composition of the surfactant mixture, and the resulting effects on foam rheological properties, foam film drainage, and bubble Ostwald ripening. The observed high surface modulus in the presence of fatty acids is explained with the formation of a surface condensed phase of fatty acid molecules in the surfactant adsorption layer.  相似文献   

18.
Rotating disc reactor (RDR) was constructed to conduct gas–liquid–solid reactions with controlled reagent transfer from gaseous to liquid phase. The concept is based on continuous formation of thin liquid films at a surface of rotating discs where the mass transfer proceed in diffusion–convective way. The reactor was employed to run precipitation reaction of CaCO3 via carbon dioxide absorption in lime slurry. During each reaction pH changes and Ca2+ concentration in time were measured. Disc rotations and gas flows were changed during the experiment and their influence on the obtained CaCO3 powders has been examined and fully discussed.  相似文献   

19.
Alpha olefin sulfonate (AOS) surfactants have shown outstanding detergency, lower adsorption on porous rocks, high compatibility with hard water and good wetting and foaming properties. These properties make AOS an excellent candidate for foam applications in enhanced oil recovery. This paper summarizes the basic properties of foam films stabilized by an AOS surfactant. The foam film thickness and contact angle between the film and its meniscus were measured as a function of NaCl and AOS concentrations. The critical AOS concentration for formation of stable films was obtained. The critical NaCl concentration for formation of stable Newton black films was found. The dependence of the film thickness on the NaCl concentration was compared to the same dependence of the contact angle experiments. With increasing NaCl concentration the film thickness decreases gradually while the contact angle (and, respectively the free energy of film formation) increases, in accordance with the classical DLVO theory.The surface tension isotherms of the AOS solutions were measured at different NaCl concentrations. They coincide on a single curve when plotted as a function of mean ionic activity product. Our data imply that the adsorption of AOS is independent of NaCl concentration at a given mean ionic activity.  相似文献   

20.
The behaviour and the life time ( p) of different types of foam films (thin liquid films, for which DLVO-theory is valid; common black films, Newton black films) have been studied as a function of external pressure (P), applied in the Plateau-Gibbs-borders of the foam. The foam stability and the course of thep/P-dependence are determined mainly by the type of the foam films. A criterion for estimation of foam stability is proposed on the base of the obtained experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号