首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new tetranuclear square compound (H3O)[Sm2Co2(CDTA)2(DMF)2 (μ4-O) (H2O)6]ClO4 was synthesized through the assembly reaction of Co2+ , Sm3+ and trans-1,2-cclohexylenedinitrilotetraacetic acid (H4CDTA) in aqueous solution. X-ray crystal structural analysis shows that the compound belongs to the monoclinic C2/c space group, with a=27.213(2), b=10.5574(9), c=19.4923(17),β=98.799(1)°, V=5534.1(8)3 , C34H65ClCo2N6O30Sm2 , Mr=1491.93, Dc=1.791g/cm-3 , F(000)=2984,=2.820 mm-1 and Z=4. In the compound, Co2+ is 7-coordianted while Sm3+ is 9-coordinated. With the help of a central O2- and 8 carboxylate oxygen atoms, two Co2+ and two Sm3+ ions are linked into a square with the side length of 3.45 . Magnetic property was investigated.  相似文献   

2.
Synthesis of Carboxylate Substituted Rhenium Gold Metallatetrahedranes Re2(AuPPh3)2(μ-PCy2)(CO)71-OC(R)O) (R = H, Me, CF3, Ph, 3,4-(OMe)2C6H3) The reaction of the in situ prepared salt Li[Re2(μ-H)(μ-PCy2)(CO)7(ax-C(Ph)O)] ( 2 ) with 1,5 equivalents of monocarboxylic acid RCOOH (R = H ( 4 a ), Me ( 4 b ), CF3 ( 4 c ), Ph ( 4 d ), 3,4-(OMe)2C6H3 ( 4 e ) in tetrahydrofruan (THF) solution at 60 °C gives within 4 h under release of benzaldehyde (PhCHO) the η1-carboxylate substituted dirhenium salt Li[Re2(μ-H)(μ-PCy2)(CO)71-OC(R)O)] (R = H ( 4 a ), Me ( 4 b ), CF3 ( 4 c ), Ph ( 4 d ), 3,4-(OMe)2C6H3 ( 4 e )) in almost quantitative yield. The lower the pKa value of the respective carboxylic acid the faster the reaction proceeds. It was only in the case of CF3COOH possible to prove the formation of the hydroxycarbene complex Re2(μ-H)(μ-PCy2)(CO)7(=C(Ph)OH) ( 5 ) prior to elimination of PhCHO. The new compounds 4 a–4 e were only characterized by 31P NMR and ν(CO) IR spectroscopy as they are only stable in solution. They are converted with two equivalents of BF4AuPPh3 at 0 °C in a so-called cluster expansion reaction into the heterometallic metallatetrahedrane complexes Re2(AuPPh3)2(μ-PCy2)(CO)71-OC(R)O) (R = H ( 7 a ), Me ( 7 b ), CF3 ( 7 c ), Ph ( 7 d ), 3,4-(OMe)2C6H3 ( 7 e )) (yield 47–71% ). The expected precursor complexes of 7 a–7 e Li[Re2(AuPPh3)(μ-PCy2)(CO)71-OC(R)O] ( 8 ) were not detected by NMR and IR spectroscopy in the course of the reaction. Their existence was retrosynthetically proved by the reaction of 7 b with an excess of the chelating base TBD (1,5,7-Triazabicyclo[4.4.0]dec-5-en) forming [(TBD)xAuPPh3][Re2(AuPPh3)(μ-PCy2)(CO)71-OC(Me)O] ( 8 b ) in solution. The η1-bound carboxylate ligand in 7 a–7 e can photochemically be converted into a μ-bound ligand in Re2(AuPPh3)2(μ-PCy2)(μ-OC(R)O)(CO)6 (R = H ( 9 a ), Me ( 9 b ), CF3 ( 9 c ), Ph ( 9 d ), 3.4-(MeO)2C6H3 ( 9 e )) under release of one equivalent CO. All isolated cluster complexes were characterized and identified by the following analytical methods: elementary analysis, NMR (1H, 31P) spectroscopy, ν(CO) IR spectroscopy and in the case of 7 d and 9 b by X-ray structure analysis.  相似文献   

3.
The complexes of the type [ReH(CO)5–n(PMe3)n] (n = 4, 3) were reacted with aldehydes, CO2, and RC?CCOOMe (R = H, Me) to establish a phosphine-substitutional effect on the reactivity of the Re–H bond. In the series 1–3 , benzaldehyde showed conversion with only 3 to afford a (benzyloxy)carbonyltetrakis(trimethylphosphine)rhenium complex 4 . Pyridine-2-carbaldehyde allowed reaction with all hydrides 1–3 . With 1 and 2 , the same dicarbonyl[(pyridin-2-yl)methoxy-O, N]bis(trimethylphosphine)rhenium 5b was formed with the intermediacy of a [(pyridin-2-yl)methoxy-O]-ligated species and extrusion of CO or PMe3, respectively. The analogous conversion of 3 afforded the carbonyl[(pyridin-2-yl)methoxy-O,N]tris(trimethylphosphine)rhenium ( 1 ) 7b . While 1 did not react with CO2, 2 and 3 yielded under relatively mild conditions the formato-ligated [Re(HCO2)(CO)(L)(PMe3)3] species ( 8 (L = CO) and 9 (L = PMe3)). Methyl propiolate and methyl butynoate were transformed, in the presence of 1 , to [Re{C(CO2Me)?CHR}(CO)3(PMe3)2] systems ( 10a (R = H), and 10b (R = Me)), with prevailing α-metallation and trans-insertion stereochemistry. Similarly, HC≡CCO2Me afforded with 2 and 3 , the α-metallation products [Re{C(CO2Me)?CH2}(CO)(L)(PMe3)3] 11 (L = CO) and 12 (L = PMe3). The methyl butyonate insertion into 2 resulted in formation of a mixture of the (Z)- and (E)-isomers of [Re{C(CO2Me)?CHMe} (CO)2(PMe3)3] ( 13a , b ). In the case of the conversion of 3 with MeC?CCO2Me, a Re–H cis-addition product [Re{(E)-C(CO2Me)?CHMe}(CO)(PMe3)4] ( 14 ) was selectively obtained. Complex 11 was characterized by an X-ray crystal-structure analysis.  相似文献   

4.
1INtrODUCTIONThethiophilicpropertyoftransitionmetalshasbeensuccessfullyusedforthesynthesisofsulfidocluster[li.ComPOundscontainingsulfidoligandsareimportantinvariousareasofmodernchemistry"--".WehaverePOrtedthesynthesesandstructuresofaserialmixedsulfidoclustersts'6i.Theelectrophilic--additionsubstituenteliminationreactionmechanismwasalsoproPOsed.Asapartofcontinuouswork,herewereportthesynthesisandcharacterizationofthetitlecluster.2EXPERIMENTALAlloperationswerecarriedoutunderhighlypure…  相似文献   

5.
The terminal rhenium(I) phosphaethynolate complex [Re(PCO)(CO)2(triphos)] has been prepared in a salt metathesis reaction from Na(OCP) and [Re(OTf)(CO)2(triphos)]. The analogous isocyanato complex [Re(NCO)(CO)2(triphos)] has been likewise prepared for comparison. The structure of both complexes was elucidated by X‐ray diffraction studies. While the isocyanato complex is linear, the phosphaethynolate complex is strongly bent around the pnictogen center. Computations including natural bond orbital (NBO) theory, natural resonance theory (NRT), and natural population analysis (NPA) indicate that the isocyanato complex can be viewed as a classic Werner‐type complex, that is, with an electrostatic interaction between the ReI and the NCO group. The phosphaethynolate complex [Re(P?C?O)(CO)2(triphos)] is best described as a metallaphosphaketene with a ReI–phosphorus bond of highly covalent character.  相似文献   

6.
7.
SynthesisandCharacterizationofSn┐WComplexesandCrystalStructureofPh3SnW(CO)3C5H4CH3*WANGJi-Tao**,HEHai-Yang,XUYu-Ming,ZHANGYun...  相似文献   

8.
The clusters Ru(3)(CO)(10)L(2), where L = PMe(2)Ph or PPh(3), are shown by NMR spectroscopy to exist in solution in at least three isomeric forms, one with both phosphines in the equatorial plane on the same ruthenium center and the others with phosphines in the equatorial plane on different ruthenium centers. Isomer interconversion for Ru(3)(CO)(10)(PMe(2)Ph)(2) is highly solvent dependent, with DeltaH decreasing and DeltaS becoming more negative as the polarity of the solvent increases. The stabilities of the isomers and their rates of interconversion depend on the phosphine ligand. A mechanism that accounts for isomer interchange involving Ru-Ru bond heterolysis is suggested. The products of the reaction of Ru(3)(CO)(10)L(2) with hydrogen have been monitored by NMR spectroscopy via normal and para hydrogen-enhanced methods. Two hydrogen addition products are observed with each containing one bridging and one terminal hydride ligand. EXSY spectroscopy reveals that both intra- and interisomer hydride exchange occurs on the NMR time scale. On the basis of the evidence available, mechanisms for hydride interchange involving Ru-Ru bond heterolysis and CO loss are proposed.  相似文献   

9.
Several new polyhydride complexes of rhenium containing the tridentate phosphine PhP(CH(2)CH(2)CH(2)PCy(2))(2) (Cyttp) were synthesized and characterized by (1)H and (31)P{(1)H} NMR and IR spectroscopy. The solid state structure of the previously reported ReH(5)(Cyttp) (1) was determined by X-ray crystallography. 1 crystallizes in the space group P2(1)/m with the following unit cell parameters: a = 8.582(2) ?, b = 19.690(2) ?, c = 10.800(2) ?, beta = 95.57(1) degrees, and Z = 2. The molecule adopts a classical polyhydride, triangulated dodecahedral structure, with the three phosphorus atoms and one hydrogen atom occupying the B sites, and the remaining hydrogen atoms occupying the A sites. 1 is protonated by HSbF(6) (or HBF(4)) to yield [ReH(4)(eta(2)-H(2))(Cyttp)]SbF(6) (3), which was shown by X-ray diffraction techniques (space group P&onemacr;, unit cell parameters: a = 9.874(2) ?, b = 14.242(4) ?, c = 16.198(2) ?, alpha = 99.12(2) degrees, beta = 98.85(2) degrees, gamma = 109.42(2) degrees, and Z = 2) to contain a nonclassical polyhydride cation with a triangulated dodecahedral structure in the solid. The same structure is suggested in solution by (1)H NMR data (including T(1) measurements). 3 is inert to loss of H(2) and is unaffected by CO, t-BuNC, and P(OMe)(3) at room temperature. In contrast, 1 reacts with a variety of reagents to afford classical tetrahydride complexes which are thought also to possess a triangulated dodecahedral structure, with the hydrogens in the A sites, from spectroscopic evidence. Accordingly, CS(2), p-O(2)NC(6)H(4)NCS, and EtOC(O)NCS (X=C=S) insert into an Re-H bond to yield ReH(4)(SCH=X)(Cyttp) (5-7, respectively). MeI cleaves one Re-H bond to afford ReH(4)I(Cyttp) (8), and [C(7)H(7)]BF(4) abstracts hydride in the presence of MeCN, t-BuNC, CyNC, or P(OMe)(3) (L) to give [ReH(4)L(Cyttp)]BF(4) (9-12, respectively). A related pentahydride, ReH(5)(ttp) (2, ttp = PhP(CH(2)CH(2)CH(2)PPh(2))(2)), also reacts with HSbF(6) to yield [ReH(6)(ttp)]SbF(6) (4), which appears to be a nonclassical polyhydride in solution by T(1) measurements.  相似文献   

10.
Carbamoyl complexes, (CO)4Re(NH2R)(CONHR)(R = ethyl, 1; R = allyl, 2; R = isopropyl, 3) were prepared by reactions of (CO)5ReBr (or (CO)5ReCH2SiMe3) with appropriate amines. Complexes 1, 2 and 3 reacted with CH3CH2COCl to give Re(CO)5(NH2R)+Cl? (R = ethyl, 4; R = allyl, 5; R - isopropyl, 6). Complex 5 undergoes nucleophilic attack by KOMe to give the alkoxycarbonyl complexes (CO)4Re(NH2-Allyl)(COOMe), 7. Complexes 4, 5, 6 and 7 were transformed to the corresponding carbamoyl complexes by reacting with appropriate amines. The reactions between the carbamoyl complexes and R″OH/CHCl3 in air at room temperature gave the proposed products [(CO)4Re(NH2R)]2O (R = allyl, 8; R = isopropyl, 9), respectively. Complex 8 can also be prepared by heating 7 in CDCl3 at 63–68°C for several days. The structure of 1 was confirmed by a X-ray crystallographic study. Crystallographic data: space group P21/c, a = 8.193 (3) Å, b = 19.273 (3) Å, c = 9.348 (8) Å, β = 110.37 (4)°, V = 1383.68 Å3, Z = 4; R(F) = 0.027, Rw(F) = 0.030, based on 1888 reflections with I > 2.5σ(I). The other complexes were characterized by 1H NMR, 13CNMR, IR and mass spectra.  相似文献   

11.
12.
The thermodynamic hydride donor abilities of 1-benzyl-1,4-dihydronicotinamide (BzNADH, 59 +/- 2 kcal/mol), C(5)H(5)Mo(PMe(3))(CO)(2)H (55 +/- 3 kcal/mol), and C(5)Me(5)Mo(PMe(3))(CO)(2)H (58 +/- 2 kcal/mol) have been measured in acetonitrile by calorimetric and/or equilibrium methods. The hydride donor abilities of BzNADH and C(5)H(5)Mo(PMe(3))(CO)(2)H differ by 13 and 24 kcal/mol, respectively, from those reported previously for these compounds in acetonitrile. These results require significant revisions of the hydricities reported for related NADH analogues and metal hydrides. These compounds are moderate hydride donors as compared to previously determined compounds.  相似文献   

13.
14.
1 INTRODUCTION The chemistry of transition metal cluster has enjoyed an exceptional growth since the mid 1970s[1, 2], especially in recent years the structural and bonding aspects of mixed-metal tetrahedral skeleton clusters have been extensively studied[3]. One important reason is that such chiral cluster can induce an asymmetric catalysis potentially. In our research group, considerable efforts have been directed to the synthesis of chiral tetrahedral clusters containing four different…  相似文献   

15.
The complex RuH(η2-CH2PMe2)(PMe3)3 is obtained by reduction of trans-RuCl2(PMe3)4 with Na/Hg in benzene. In contrast to the iron analogue, this complex is configurationally stable on the NMR time scale and does not react with CO or P(OMe)3 under normal conditions, but it does react with the electrophiles MeI, CS2 and NH4PF6 to form RuI(η2-CH2PMe2)(PMe3)3, Ru(η3-S2CHPMe2CH2)(PMe3)3 and [RuH(PMe3)5]PF6, respectively.  相似文献   

16.
Summary Treatment oftrans-[Mo(CNMe)2(PMe2Ph)4] andme-[W(CNMe)3(PMe2Ph)3] with sulphuric or hydrochloric acids in methanol or ethanol, or in methanol alone, under irradiation, gives methylamine, ammonia and hydrocarbons (mainly methane). The complex [W2(CNMe)4(-CNHMe)2(PMe2Ph)4]2+ cation has been obtained by the treatment ofmer-[W(CNMe)3(PMe2Ph3] with H2SO4 or [Et2OH][BF4] and gives methylamine, ammonia and methane on further acid treatment.  相似文献   

17.
The late-transition-metal parent amido compound [Ir(Cp*)(PMe3)(Ph)(NH2)] (2) has been synthesized by deprotonation of the corresponding ammine complex [Ir(Cp*)(PMe3)(Ph)(NH3)][OTf] (6) with KN(SiMe3)2. An X-ray structure determination has ascertained its monomeric nature. Proton-transfer studies indicate that 2 can successfully deprotonate p-nitrophenylacetonitrile, aniline, and phenol. Crystallographic analysis has revealed that the ion pair [Ir(Cp*)(PMe3)(Ph)(NH3)][OPh] (8) exists as a hydrogen-bonded dimer in the solid state. Reactions of 2 with isocyanates and carbodiimides lead to overall insertion of the heterocumulenes into the N--H bond of the Ir-bonded amido group, demonstrating the ability of 2 to act as an efficient nucleophile. Intriguing reactivity is observed when amide 2 reacts with CO or 2,6-dimethylphenyl isocyanide. eta4-Tetramethylfulvene complexes [Ir(eta4-C5Me4CH2)(PMe3)(Ph)(L)] (L=CO (15), CNC6H3-2,6-(CH3)2 (16)) are formed in solution through displacement of the amido group by the incoming ligand followed by deprotonation of a methyl group on the Cp* ring and liberation of ammonia. Conclusive evidence for the presence of the Ir-bonded eta4-tetramethylfulvene moiety in the solid state has been provided by an X-ray diffraction study of complex 16.  相似文献   

18.
The directed synthesis, spectroscopic properties, and reactivity of bis(trimethylphosphine) beryllium dichloride ( 1 ) and bis(diphenylphosphino)propane beryllium dichloride ( 2 ) are reported, including the crystal structure of (PMe3)2BeCl2 ( 1 ). These four‐coordinate beryllium compounds can be alkylated with n‐butyllithium (nBuLi) to give three‐coordinate (Ph2PC3H6PPh2)BenBu2 ( 3 ) and (PMe3)BenBu2 ( 4 ). PMe3 can be removed from (PMe3)BenBu2 ( 4 ) in vacuo to yield [nBu2Be]2 ( 5 ). For the first time, the presence of [nBu2Be]2 as a dimer in solution, which has been postulated for decades, could be observed spectroscopically. This novel, ether‐free pathway provides access to beryllium dialkyl compounds that have never been in contact with oxygen‐atom‐containing reagents or solvents. This “freeness from oxygen” is crucial for semiconductor applications where oxygen is often unwanted and must be avoided at all costs.  相似文献   

19.
The different coordination behavior of the flexible yet sterically demanding, hemilabile P,N ligand bis(quinoline-2-ylmethyl)phenylphosphine ( bqmpp ) towards selected CuI, AgI and AuI species is described. The resulting X-ray crystal structures reveal interesting coordination geometries. With [Cu(MeCN)4]BF4, compound 1 [Cu2(bqmpp)2](BF4)2 is obtained, wherein the copper(I) atoms display a distorted square planar and square pyramidal geometry. The steric demand and π-stacking of the ligand allow for a short Cu⋅⋅⋅Cu distance (2.588(9) Å). CuI complex 2 [Cu4Cl3(bqmpp)2]BF4 contains a rarely observed Cu4Cl3 cluster, probably enabled by dichloromethane as the chloride source. In the cluster, even shorter Cu⋅⋅⋅Cu distances (2.447(1) Å) are present. The reaction of Ag[SbF6] with the ligand leads to a dinuclear compound ( 3 ) in solution as confirmed by 31P{1H} NMR spectroscopy. During crystallization, instead of the expected phosphine complex 3 , a tris(quinoline-2-ylmethyl)bisphenyl-phosphine ( tqmbp ) compound [Ag2(tqmbp)2](SbF6)2 4 is formed by elimination of quinaldine. The Au(I) compound [Au2(bqmpp)2]PF6 ( 5 ) is prepared as expected and shows a linear arrangement of two phosphine ligands around AuI.  相似文献   

20.
The reaction of the cluster salts [Cp(2*) Nb(CO)(2)](n)[Co(11)Te(7)(CO)(10)] (Cp*=C(5)Me(5); n=1, 2) with excess PMe(2)Ph gave the neutral, dark brown clusters [Co(11)Te(7)(CO)(6)(PMe(2)Ph)(4)] (5) and [Co(11)Te(7)(CO)(5)(PMe(2)Ph)(5)] (6) with 147 metal valence electrons. The new compounds were characterized by IR spectroscopy, elemental analyses, and mass spectrometry. The molecular structure of 6 was determined by X-ray crystallography. Like its precursor anion, it consists of a pentagonal-prismatic [Co(11)Te(7)] core, but with a ligand sphere composed of five CO and five PMe(2)Ph ligands. Detailed electrochemical studies of both reactions reveal that a stepwise substitution of CO ligands in the initial cluster anions takes place leading to intermediate [Co(11)Te(7)(CO)(10-m)(PMe(2)Ph)(m)](n-) ions (m=1-5; n=1, 2). Each of these intermediates is distinguished by at least one oxidation and two reduction waves, giving rise to a total of 21 redox couples and 27 electroactive species. The electron sponge character of the new compounds is particularly pronounced in 5, which exhibits charges n between +1 and -4 corresponding to metal valence electron counts of between 146 and 151.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号