首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The initial stages of stress corrosion on an amorphous polymer is investigated. This is done by exposing stressed specimens of polycarbonate to an acetone and water solution. The surface develops two distinct features of degradation that appear on different length scales when subjected to tensile stress. Small pits form on the surface and make it rough. These pits are in the order of micrometers, and are found to be randomly distributed. They occur even without load and seem to slightly increase in number with increasing stress. In the millimeter domain, visible to the bare eye, surface cracks are formed transverse to the direction of loading. The occurrence of cracks is seen to have a positive stress threshold value, exceeding which, a linear increase of number of cracks with stress is found. The manners in which the cracks grow and coalesce on the surface are examined. It is seen that they do not meet crack tip to crack tip. Instead, they avoid each other initially and coalesce crack tip to crack side. The results are discussed in the light of mechanical considerations. A stress analysis for a few configurations of meeting cracks supports the experimental observations. With assumptions of stress corrosion crack growth and coalescence, a simulation of cracks growing from randomly distributed initiation sites is performed. Similar crack patterns as obtained in the experiments are found.  相似文献   

2.
In this study, the transient response of multiple cracks subjected to shear impact load in a half-plane is investigated. At first, exact analytical solution for the transient response of Volterra-type dislocation in a half-plane is obtained by using the Cagniard-de Hoop method of Laplace inversion and is expressed in explicit forms. The distributed dislocation technique is used to construct integral equations for a half-plane weakened by multiple arbitrary cracks. These equations are of Cauchy singular type at the location of dislocation solved numerically to obtain the dislocation density on the cracks faces. The dislocation densities are employed to determine dynamic stress intensity factors history for multiple smooth cracks. Finally, several examples are presented to demonstrate the applicability of the proposed solution.  相似文献   

3.
The interaction of through, surface, and internal cracks in shells of arbitrary curvature is examined. Crack of the same and different types with various geometry are considered. The curvature of the shell, the length and depth of the cracks, their arrangement and distance between them have a strong effect on the stress intensity factors for part-through cracks and on the force and moment intensity factors for through cracks  相似文献   

4.
The stress intensity factors (SIFs) are evaluated for flat elliptical cracks located in a transversally isotropic material (cracks are assumed perpendicular to the transtropy axis) under an arbitrary load and symmetric temperature. The SIFs for an elliptical crack in a transversally isotropic medium are determined using the formulas (derived by the author in his previous studies) of transition from an isotropic to transversally isotropic material and the relative problem for an isotropic medium. It is proved that these formulas can be employed for an arbitrary homogeneous transversally isotropic material (no matter whether the roots of some characteristic equation of the material are real or complex) with an arbitrary flat crack or a system of coplanar flat cracks, including elliptical ones, under an arbitrary load and symmetric temperature. A transversally isotropic material with two coplanar elliptical cracks is considered as an illustrative example. The dependences of the SIFs on the parameters of cracks and their arrangement at a decreasing temperature are presented. S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine Kiev. Translated from Prikladnaya Mekhanika, Vol. 36, No. 4, pp. 96–105, April, 2000.  相似文献   

5.
In this paper, a method is presented to calculate the plane electro–elastic fields in piezoelectric materials with multiple cracks. The cracks may be distributed randomly in locations, orientations and sizes. In the method, each crack is treated as a continuous distributed dislocations with the density function to be determined according to the conditions of external loads and crack surfaces. Some numerical examples are given to show the interacting effect among multiple cracks.  相似文献   

6.
As we know, problems with boundary imperfections (notches or cracks) are the more important one in practical fracture analysis. Frequently, these imperfections would appear in the boundaries of the bodies as a randomly distributed group, and under the loading circumstances would grow up to be unstable cracks which induces catastrophic fracture of the bodies. For right evaluation the fracture behavior of the bodies with such boundary imperfections, it demands mathematical solutions for problems with random boundary notches and/or cracks.  相似文献   

7.
对包含不同类型裂纹(横裂纹、横-斜裂纹以及任意斜裂纹)的转子的耦合振动进行研究,以揭示裂纹转子在不同方向上刚度参数的变化规律及其交叉耦合机理,特别是由此引发的振动特征.对于包含不同类型裂纹的转子轴段,采用六自由度Timoshenko梁单元模型对其进行单元建模,并基于应变能理论推导计算柔度参数和刚度矩阵.在此基础上,采用纽马克-β数值算法求解裂纹转子的运动方程,获得裂纹转子在单故障或多故障激励(不平衡激励、扭转激励或不平衡激励加扭转激励)作用下的耦合振动响应,进而分析耦合振动谱特征.与横裂纹和横-斜裂纹相比,任意斜裂纹使转子刚度矩阵的交叉耦合效应更显著,导致转子发生更强烈的弯-扭耦合甚至是纵-弯-扭耦合振动.无论是在不平衡激励还是扭转激励作用下,弯曲振动与扭转振动幅度都更大.而且,包含不同类型裂纹的转子的耦合振动特征频率,例如旋转基频与二倍频、扭转激励频率及其边带成分的幅值,对裂纹面方向角具有不同的敏感性.所得的这些研究结果,可以为转子裂纹的特征参数辨识与诊断提供理论依据.  相似文献   

8.
多个共面任意分布表面裂纹的应力强度因子   总被引:2,自引:0,他引:2  
采用线弹簧模型求解多个共面任意分布表面裂纹的应力强度因子。基于Reissner板理论和连续分布位错思想,通过积分变换方法,将含有多个共面任意分布表面裂纹的无限平板问题归结为一组Cauchy型奇异积分方程。利用Gauss-Ghebyshev笔法获得了奇异积分方程的数值解。为验证本文法的正确性,文中最后给出了有关应力强度因子或P-V曲线的数值结果并与现有的理论结果或实验结果进行了对比。结果表明了连续位  相似文献   

9.
The general equations for a dynamically curved crack in an anisotropic solid are derived, and the asymptotic fields of a moving crack under arbitrary distributed loading on the crack surface are calculated from them. For a moving crack under mixed-mode loading conditions a general Muskhelishvili type approach is proposed to calculate intensity factors due to crack surface loading in anisotropic materials. The kinking and curving caused by dynamic loading in anisotropic materials are calculated using the maximum normal stress ratio criterion. The results show that cracks in anisotropic solids may deviate from the straight path and approach a direction parallel to the stiff axis even under symmetric loading and that a crack will tend to deviate more from the crack path to the direction of the stiff axis as the crack speed becomes higher.  相似文献   

10.
In this paper, the interactions between an elliptic hole and an arbitrary distributed small crack in plane piezoelectric medium, which are often happened in engineering problems, are discussed. The Green’s functions in a piezoelectric plate with an elliptic hole for a generalized line dislocation and a generalized line force are presented. The small crack is represented by unknown continuous distributed dislocations. By considering traction free conditions on the surface of the small crack, the problem is then reduced to a group of singular integral equations which are solved by using a special numerical technique. Accuracy of the present method is confirmed by comparing the numerical results with those in literatures for PZT-4 when the elliptic hole is degenerated into a crack. The generalized stress intensity factors of cracks and the generalized stress on the edge of the elliptic hole are shown graphically. It is shown that the small crack may have shielding or amplifying effects on the main elliptic hole or crack, which depends on the location and orientation of the small crack. The hole near a crack can significantly reduce the stress intensity factor of the crack. The direction of the electric field is important to shielding effect.  相似文献   

11.
An infinite elastic plane containing two straight cracks of arbitrary length and location is analyzed within the framework of elastostatics. The mathematical formulation is based on the stress solution for a single crack and leads to a system of singular integral equations that govern the crack surface displacement densities. The solution series in terms of the reciprocal of the crack centre distance is not suitable for cracks that are spaced too closely. It is shown by way of examples that the method of asymptotic solution is convenient for developing approximation expressions of the stress and displacement field with certain characteristics. The formulas for the stress intensity factors and crack opening are given for the case of a constant tensile load. Graphical results are given for the variations of the stress intensity factors with parameters depending on the relative positions of the cracks.  相似文献   

12.
An infinite elastic plane containing two straight cracks of arbitrary length and location is analyzed within the framework of elastostatics. The mathematical formulation is based on the stress solution for a single crack and leads to a system of singular integral equations that govern the crack surface displacement densities. The solution series in terms of the reciprocal of the crack centre distance is not suitable for cracks that are spaced too closely. It is shown by way of examples that the method of asymptotic solution is convenient for developing approximation expressions of the stress and displacement field with certain characteristics. The formulas for the stress intensity factors and crack opening are given for the case of a constant tensile load. Graphical results are given for the variations of the stress intensity factors with parameters depending on the relative positions of the cracks.  相似文献   

13.
For a linearly elastic brittle solid containing microcracks that may be closed or may undergo frictional sliding, a general method is developed for estimating the overall instantaneous moduli which depend on the loading conditions. When the cracks are all open and when they are randomly distributed, then the overall response is isotropic. The moduli for this case have been obtained by Budiansky and O'C onnell (1976). On the other hand, when some cracks close, and when some closed cracks undergo frictional sliding, then the overall response becomes anisotropic and dependent on the loading conditions, as well as on the loading path. The self-consistent method is used to estimate the overall moduli. The effects of crack closure and loadinduced anisotropy are included. Several illustrative examples are worked out, showing the important influence of the load path on the overall response when crack closure and frictional sliding are involved.  相似文献   

14.
In this paper, a general and simple way was found to solve the problem of an arbitrary hole with edge cracks in transversely isotropic piezoelectric materials based on the complex variable method and the method of numerical conformal mapping. Firstly, the approximate mapping function which maps the outside of the arbitrary hole and the cracks into the outside of a circular hole is derived after a series of conformal mapping process. Secondly, based on the assumption that the surface of the cracks and hole is electrically impermeable and traction-free, the approximate expressions for the complex potential, fields intensity factors and energy release rates are presented, respectively. Thirdly, under the in-plane electric loading together with the out-plane mechanical loading, the influences of the hole size, crack length and mechanical/electric loading on the fields intensity factors and energy release rates are analyzed. Finally, some particular holes with edge cracks are studied in numerical analysis. The result shows that, the mechanical loading always promotes crack growth, while the electric loading may retard crack growth.  相似文献   

15.
Strain-softening damage due to distributed cracking is modeled by an elastic continuum with a quasiperiodic array of cracks of regular spacing but varying sizes. As a model for the initial stage, the cracks are penny-shaped and small compared to their spacing, and as a model for the terminal stage the uncracked ligaments between the cracks are circular and small compared to their spacing. The strain due to cracks and the compliance per crack are calculated. The cracked material is homogenized in such a manner that the macroscopic continuum strains satisfy exactly the condition of compatibility with the actual strains due to cracks, and the macroscopic continuum stress satisfies exactly the condition of work equivalence with the actual stresses in the cracked material. The results show that, contrary to the existing theories, the damage variable used in continuum damage mechanics should be nonlocal, while the elastic part of the response should be local. In particular, the nonlocal continuum damage should be considered as a function of the spatial average of the cracking strain rather than its local value. The size of the averaging region is determined by the crack spacing.  相似文献   

16.
闫相桥 《力学学报》2004,36(5):604-610
提出了平面弹性介质中多孔洞多裂纹相互作用问题的一种数值计算方 法. 通过把适于单一裂纹的Bueckner原理扩充到含有多孔洞多裂纹的一般体系,将原问题 分解为承受远处载荷不含裂纹不含孔洞的均匀问题,和在远处不承受载荷但在裂纹面上和孔 洞表面上承受面力的多孔洞多裂纹问题. 于是,以应力强度因子作为参量的问题可以通过考 虑后者(多孔洞多裂纹问题)来解决,而利用提出的杂交位移不连续法,这种多孔 洞多裂纹问题是容易数值求解的. 算例说明该数值方法对分析平面弹性介质中多孔洞多裂纹 相互作用的问题既简单又有效.  相似文献   

17.
We use the Betti theorem to obtain the integral equations of the dynamic theory of elasticity for a multilayer convex body with an arbitrary elastic anisotropy of layers containing plane infinitely thin cracks. The systems of integral equations relate the displacement jumps to the stresses on the crack lips and are stated numerically in terms of Fourier transforms. For the case of plane-parallel layers with a set of plane cracks on the interfaces between the layers, we propose a simple numerical-analytic method for constructing the Fourier symbol, i.e., the matrix of the kernel of the system of integral equations. The method is stable for an arbitrary combination of continuous and discontinuous conditions on the layer boundaries. Numerical examples are given for a packet of four heterogeneous anisotropic layers.  相似文献   

18.
N. Vaysfeld  Yu. Protserov 《Meccanica》2017,52(15):3731-3742
The torsion axisymmetric problem for a finite cylinder consisting of an arbitrary quantity of cylindrical coaxial layers is solved. Multiple cylindrical cracks with free of loading branches are situated on adjoining surfaces of the layers. The boundary problem is reduced to the system of integro-differential equations, its solution is found with the help of the orthogonal polynomials method. The novelty of the paper is in the construction of a solution for an arbitrary number of cylinder layers which allows the approximation of the initial problem for functionally graded materials by the problem for coaxial cylinders with jumplike changing elastic constants of the materials. Since the solution is built regardless of the number of layers (the elastic parameters of all layers are included in the constructed solution), one can refine an initial problem’s statement by increasing the number of layers. The stress intensity factors are found for an arbitrary number of cylindrical interface cracks in the multilayered cylinder of a finite length.  相似文献   

19.
杨骁  蔡洪浩  戴缘 《力学季刊》2019,40(1):72-84
将梁中横向裂纹等效为无质量扭转弹簧,并忽略其对梁剪切变形的影响,得到的具有任意裂纹数目Timoshenko 梁自振模态的统一显示解析表达式.将裂纹梁的自振模态分为基本模态和裂纹附加模态,利用最小二乘拟合,建立了利用裂纹附加模态函数的梁裂纹损伤识别方法.通过数值模拟开展了简支单裂纹梁以及悬臂和固支双裂纹梁等的裂纹损伤识别,考察了测量误差对损伤识别的影响,数值结果表明本文所提出的裂纹损伤识别方法对裂纹位置的识别精度高于对裂纹损伤程度的识别精度;随着测量误差的增加,裂纹位置及裂纹损伤程度的识别误差增加,但仍在可接受的范围内,故该裂纹损伤识别方法在实际工程中具有一定的应用价值.  相似文献   

20.
压缩载荷下孔隙结构变化的CT实验研究   总被引:1,自引:0,他引:1  
为了研究孔隙对岩石力学性能的影响,利用自制的孔隙物理模型,通过单轴压缩和CT扫描实验研究了受载条件下孔隙率对岩石孔隙结构的演化及其对外部物理力学性能的影响,得到了不同加载阶段和不同CT观察尺度下孔隙模型的裂纹扩展规律以及孔隙和固体介质的损伤变化情况. 实验结果表明:孔隙模型在受载条件下裂纹主要发生在峰值荷载之后,主裂纹大都集中在孔隙密集的地方且伴随许多细小裂纹的产生;峰值载荷前出现了少数微裂纹,微裂纹的产生与演化主要发生在孔隙周边.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号