首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Periodic solutions of autonomous quasiharmonic systems are studied in the resonant case if the branching equation has multiple roots. In order to find all the real solutions of this equation, we use Newton's diagram. This problem may have no real periodic solution. This depends upon the configuration of the descending section of Newton's diagram and upon the roots of the appropriate defining equations. The stability of these periodic solutions is also considered. Sufficient conditions of the solutions depend upon the defining equation.  相似文献   

2.
We propose here some explicit hybrid schemes which enable accurate computation of Euler equations with arbitrary (analytic or tabulated) equation of state (EOS). The method is valid for the exact Godunov scheme and some approximate Godunov schemes. To cite this article: T. Gallouët et al., C. R. Mecanique 330 (2002) 445–450.  相似文献   

3.
The method of variation of parameters in conjunction with the generalized method of averaging is used to study the canonical equations of Hamilton of conservative system with N degrees of freedom whose Hamiltonian is weakly perturbed. This method is applied to the Mathieu equation.  相似文献   

4.
We consider an ordinary differential equation E, x(t) = F(t, x(t)), with time periodic right hand side, with period T. The translation mapping Θ is the one which transforms an initial point Y at time t0 into the value at time t0 + T of the solution of E with initial conditions (t0, Y). It is known that the solution with initial conditions (t0, Z) is periodic with period T if and only if Z is a fixed point of Θ. In this paper the Newton's method is applied to locate the fixed points of the translation mapping Θ.  相似文献   

5.
We investigate the time evolution of the density of interfaces in a two-phase mixture, with particular emphasis on the role of compressibility, dilatability and phase transitions. Two different and complementary routes are considered: a rather intuitive one based on exact results for dilute mixtures which are then interpolated to all concentrations, and a more systematic approach based on the statistical average of the exact transport equation for elementary pieces of interfaces. To cite this article: D. Lhuillier, C. R. Mecanique 332 (2004).  相似文献   

6.
Within an averaging approach, the governing equations and effective boundary conditions describing both the average and pulsation motion of a near-critical fluid subjected to high-frequency vibrations are obtained. Vibrations induce the non-homogeneities in average temperature. Owing to these non-homogeneities, the average flows can be generated even in isothermal cavity under weightlessness. These flows are examined for 1D and 2D configurations. The direct numerical simulations fulfilled earlier confirm the averaged model, we obtain the same flow structures by essentially smaller requirements for computational time. To cite this article: A.Vorobev et al., C. R. Mecanique 332 (2004).  相似文献   

7.
We build a rate potential through the introduction of several behavior assumptions, of which we discuss the physical meaning. Inserted into the quasi-static equations, this potential allows us to revisit the generic problem of the plastic buckling of the cruciform column. We get an interval on the parameter axis of which any point is a bifurcation point. This result is qualitatively interesting from the point of view of spectral analysis, as the existence of such a continuum was up to now related to discontinuities in the constitutive law, while everything is very smooth in the present case. To cite this article: A. Cimetière et al., C. R. Mecanique 332 (2004).  相似文献   

8.
An n degree-of-freedom Hamiltonian system with r(1<r<n) independent first integrals which are in involution is called partially integrable Hamiltonian system and a partially integrable Hamiltonian system subject to light dampings and weak stochastic excitations is called quasi partially integrable Hamiltonian system. In the present paper, the averaged Itô and Fokker-Planck-Kolmogorov (FPK) equations for quasi partially integrable Hamiltonian systems in both cases of non-resonance and resonance are derived. It is shown that the number of averaged Itô equations and the dimension of the averaged FPK equation of a quasi partially integrable Hamiltonian system is equal to the number of independent first integrals in involution plus the number of resonant relations of the associated Hamiltonian system. The technique to obtain the exact stationary solution of the averaged FPK equation is presented. The largest Lyapunov exponent of the averaged system is formulated, based on which the stochastic stability and bifurcation of original quasi partially integrable Hamiltonian systems can be determined. Examples are given to illustrate the applications of the proposed stochastic averaging method for quasi partially integrable Hamiltonian systems in response prediction and stability decision and the results are verified by using digital simulation.  相似文献   

9.
The antiplane motion of a transversely isotropic piezoelectric half-space is considered. An explicit asymptotic model is derived for the far field of the surface wave. It involves, in particular, a 1D hyperbolic equation for surface shear deformation propagating with the finite wave speed predicted for the first time by J.L. Bleustein and Yu.V. Gulyaev. Neumann and Dirichlet problems are formulated to restore interior mechanical and electric fields. The derivation utilizes asymptotic arguments combined with Lourier symbolic integration. Comparison with the exact solution is presented for surface impact loading. To cite this article: J. Kaplunov et al., C. R. Mecanique 332 (2004).  相似文献   

10.
The application of the polytropic approximation connecting the quantities of corresponding state, to experimental analysis, is clarified. A method of polytropic determination of the exponent χ (variable but non-fluctuating) in each point of the flow is given. This approximation makes it possible the generation of representative signals of fluctuating quantities, like pressure or density. For heated gases, the problem of measurement of the equations terms written with Favre averaging is thus almost solved. Then, measurement of χ allows the determination by the experiment of crucial terms like turbulent fluxes of mass and momentum, and presso correlation. To cite this article: C. Rey, S. Benjeddou, C. R. Mecanique 332 (2004).  相似文献   

11.
In this work, we study the motion of N localized vortices in the presence of ‘noise’. To apply the methods of statistical mechanics, we determine the evolution equation for the probability density function of vortices in which the presence of the ‘noise’ is accounted for by as a term similar to viscosity. This equation is isomorph to the system of equations which describe 2D turbulence with viscosity. The advantage of this formulation is that it can be numerically implemented at very large Reynolds numbers. To cite this article: S. Decossin, V. Pavlov, C. R. Mecanique 331 (2003).  相似文献   

12.
A stochastic averaging method is proposed for nonlinear energy harvesters subjected to external white Gaussian noise and parametric excitations. The Fokker–Planck–Kolmogorov equation of the coupled electromechanical system of energy harvesting is a three variables nonlinear parabolic partial differential equation whose exact stationary solutions are generally hard to find. In order to overcome difficulties in solving higher dimensional nonlinear partial differential equations, a transformation scheme is applied to decouple the electromechanical equations. The averaged Itô equations are derived via the standard stochastic averaging method, then the FPK equations of the decoupled system are obtained. The exact stationary solution of the averaged FPK equation is used to determine the probability densities of the displacement, the velocity, the amplitude, the joint probability densities of the displacement and velocity, and the power of the stationary response. The effects of the system parameters on the output power are examined. The approximate analytical outcomes are qualitatively and quantitatively supported by the Monte Carlo simulations.  相似文献   

13.
The fundamental kinetic equation of gas theory, the Boltzniann equation, is a complex integrodiffcrential equation. The difficulties associated with its solution are the result not only of the large number of independent variables, seven in the general case, but also of the very complicated structure of the collision integral. However, for the mechanics of rarefied gases the primary interest lies not in the distribution function itself, which satisfies the Boltzmann equation, but rather in its first few moments, i.e., the averaged characteristics. This circumstance suggests the possibility of obtaining the averaged quantities by a simpler way than the direct method of direct solution of the Boltzmann equation with subsequent calculation of the integrals.It is well known that if a distribution function satisfies the Boltzmann equation, then its moments satisfy an infinite system of moment equations. Consequently, if we wish to obtain with satisfactory accuracy some number of first moments, then we must require that these moments satisfy the exact system of moment equations. However, this does not mean that to determine the moments of interest to us we must solve this system, particularly since the system of moment equations is not closed. The closure of the system by specifying the form of the distribution function (method of moments) can be considered only as a rough approximate method of solving problems. First, in this case it is not possible to satisfy all the equations and we must limit ourselves to certain of the equations; second, generally speaking, we do not know which equation the selected distribution function satisfies, and, consequently, we do not know to what degree it has the properties of the distribution function which satisfies the Boltzmann equation.A more reliable technique for solving the problems of rarefied gasdynamics is that based on the approximation of the Boltzmann equation, more precisely, the approximation of the collision integral. The idea of replacing the collision integral by a simpler expression is not new [1–4]. The kinetic equations obtained as a result of this replacement are usually termed model equations, since their derivation is usually based on physical arguments and not on the direct use of the properties of the Boltzmann collision integral. In this connection we do not know to what degree the solutions of the Boltzmann equation and the model equations are close, particularly since the latter do not yield the possibility of refining the solution. Exceptions are the kinetic model for the linearized Boltzmann equation [5] and the sequence of model equations of [6], constructed by a method which is to some degree analogous with that of [5].In the present paper we suggest for the simplification of the solution of rarefied gas mechanics problems a technique for constructing a sequence of approximate kinetic equations which is based on an approximation of the collision integral. For each approximate equation (i.e., equation with an approximate collision operator) the first few moment equations coincide with the exact moment equations. It is assumed that the accuracy of the approximate equation increases with increase of the number of exact moment equations. Concretely, the approximation for the collision integral consists of a suitable approximation of the reverse collision integral and the collision frequency. The reverse collision integral is represented in the form of the product of the collision frequency and a function which characterizes the molecular velocity distribution resulting from the collisions, where the latter is selected in the form of a locally Maxwellian function multiplied by a polynomial in terms of the components of the molecular proper velocities. The collision frequency is approximated by a suitable expression which depends on the problem conditions. For the majority of problems it may obviously be taken equal to the collision frequency calculated from the locally Maxwellian distribution function; if necessary the error resulting from the inexact calculation of the collision frequency may be reduced by iterations.To illustrate the method, we solve the simplest problem of rarefied gas theory-the problem on the relaxation of an initially homogeneous and isotropic distribution in an unbounded space to an equilibrium distribution.The author wishes to thank A. A. Nikol'skii for discussions of the study and V. A. Rykov for the numerical results presented for the exact solution.  相似文献   

14.
Experimental studies of the plasticity mechanisms of polycrystals are usually based on the Schmid factor distribution supposing crystalline elasticity isotropy. A numerical evaluation of the effect of crystalline elasticity anisotropy on the apparent Schmid factor distribution at the free surface of polycrystals is presented. Cubic elasticity is considered. Order II stresses (averaged on all grains with the same crystallographic orientation) as well as variations between averages computed on grains with the same crystallographic orientation but with different neighbour grains are computed. The Finite Element Method is used. Commonly studied metals presenting an increasing anisotropy degree are considered (aluminium, nickel, austenite, copper). Concerning order II stresses in strongly anisotropic metals, the apparent Schmid factor distribution is drifted towards small Schmid factor values (the maximum Schmid factor is equal to 0.43 instead of 0.5) and the slip activation order between characteristic orientations of the crystallographic standard triangle is modified. The computed square deviations of the stresses averaged on grains with the same crystallographic orientation but with different neighbour grains are a bit higher than the second order ones (inter-orientation scatter). Our numerical evaluations agree quantitatively with several observations and measures of the literature concerning stress and strain distribution in copper and austenite polycrystals submitted to low amplitude loadings. Hopefully, the given apparent Schmid factor distributions could help to better understand the observations of the plasticity mechanisms taking place at the free surface of polycrystals. To cite this article: M. Sauzay, C. R. Mecanique 334 (2006).  相似文献   

15.
This Note reports on numerical simulations of the kinematic dynamo action in a test flow modeling the Von Kármán Sodium (VKS) experiment performed at CEA-Cadarache. We show that the conductivity of the vessel greatly influences the critical magnetic Reynolds number. These effects are dramatically amplified as the ratio of the conductivity of the vessel to that of the sodium increases from 1 to 5. To cite this article: R. Laguerre et al., C. R. Mecanique 334 (2006).  相似文献   

16.
The flow over an erodible bed is revisited supposing that the flux of sediments is proportional to the slip velocity of the potential flow. This gives a linear Benjamin–Ono equation which is numerically solved, this solution is favorably compared to a selfsimilar approached solution. To cite this article: P.-Y. Lagrée et al., C. R. Mecanique 331 (2003).  相似文献   

17.
We study the flow of a viscous incompressible fluid through a long and narrow elastic tube whose walls are modeled by the Navier equations for a curved, linearly elastic membrane. The flow is governed by a given small time dependent pressure drop between the inlet and the outlet boundary, giving rise to creeping flow modeled by the Stokes equations. By employing asymptotic analysis in thin, elastic, domains we obtain the reduced equations which correspond to a Biot type viscoelastic equation for the effective pressure and the effective displacement. The approximation is rigorously justified by obtaining the error estimates for the velocity, pressure and displacement. Applications of the model problem include blood flow in small arteries. We recover the well-known Law of Laplace and provide a new, improved model when shear modulus of the vessel wall is not negligible. To cite this article: S. ?ani?, A. Mikeli?, C. R. Mecanique 330 (2002) 661–666.  相似文献   

18.
We present in this study an analytic solution, valid for intermediate Reynolds numbers, of the Poiseuille flow perturbation in a channel. We use a method based on the solution of a linearized form of perturbation equations. The analytic solutions allow us to determine the symmetric and antisymmetric eigenmodes. For any given entry velocity profile in the channel slightly perturbed from Poiseuille flow, the complete flow solution is obtained by using an appropriate orthonormalisation procedure for the bases of the two types of eigenfunctions. To cite this article: A. Hifdi, J. Khalid Naciri, C. R. Mecanique 332 (2004).  相似文献   

19.
Linear stability of a fully developed Bingham fluid flow between two coaxial cylinders subject to infinitesimal axisymetric perturbations is investigated. The analysis leads to two uncoupled Orr–Sommerfeld equations with appropriate boundary conditions. The numerical solution is obtained using fourth order finite difference scheme. The computations were performed for various plug flow dimensions and radii ratios. Within the range of the parameters considered in this paper, the Poiseuille flow of Bingham fluid is found to be linearly stable. To cite this article: N. Kabouya, C. Nouar, C. R. Mecanique 331 (2003).  相似文献   

20.
Under realistic assumptions, we propose a thermodynamical formalism providing, for the moist-saturated air (cloudy air), a generalized Fick's law. This Fick's law leads to a double diffusive rheology with Dufour effect. The form taken by the energy equation is slightly different from the classical form used in convection problems. We compare the equations with those of the convection in moist unsaturated air (the Dufour effect and all double diffusive effects disappear in this case). As application we demonstrate some consequences of this diffusion in cloudy convection. To cite this article: P.A. Bois, C. R. Mecanique 330 (2002) 627–632.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号