首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We prove that the Riemann solutions are stable for a nonstrictly hyperbolic system of conservation laws under local small perturbations of the Riemann initial data. The proof is based on the detailed analysis of the interactions of delta shock waves with shock waves and rarefaction waves. During the interaction process of the delta shock wave with the rarefaction wave, a new kind of nonclassical wave, namely a delta contact discontinuity, is discovered here, which is a Dirac delta function supported on a contact discontinuity and has already appeared in the interaction process for the magnetohydrodynamics equations [M. Nedeljkov and M. Oberguggenberger, Interactions of delta shock waves in a strictly hyperbolic system of conservation laws, J. Math. Anal. Appl. 344 (2008) 1143-1157]. Moreover, the global structures and large time asymptotic behaviors of the solutions are constructed and analyzed case by case.  相似文献   

2.
All weak traveling wave solutions of the Camassa-Holm equation are classified. We show that, in addition to smooth solutions, there are a multitude of traveling waves with singularities: peakons, cuspons, stumpons, and composite waves.  相似文献   

3.
Summary. We consider the stability problem of the solitary wave solutions of a completely integrable equation that arises as a model for the unidirectional propagation of shallow water waves. We prove that the solitary waves possess the spectral properties of solitons and that their shapes are stable under small disturbances.  相似文献   

4.
We study the Cauchy problems for the isentropic 2-d Euler system with discontinuous initial data along a smooth curve. All three singularities are present in the solution: shock wave, rarefaction wave and contact discontinuity. We show that the usual restrictive high order compatibility conditions for the initial data are automatically satisfied. The local existence of piecewise smooth solution containing all three waves is established.  相似文献   

5.
We study travelling wave solutions of a Korteweg–de Vries–Burgers equation with a non-local diffusion term. This model equation arises in the analysis of a shallow water flow by performing formal asymptotic expansions associated to the triple-deck regularisation (which is an extension of classical boundary layer theory). The resulting non-local operator is a fractional derivative of order between 1 and 2. Travelling wave solutions are typically analysed in relation to shock formation in the full shallow water problem. We show rigorously the existence of these waves. In absence of the dispersive term, the existence of travelling waves and their monotonicity was established previously by two of the authors. In contrast, travelling waves of the non-local KdV–Burgers equation are not in general monotone, as is the case for the corresponding classical KdV–Burgers equation. This requires a more complicated existence proof compared to the previous work. Moreover, the travelling wave problem for the classical KdV–Burgers equation is usually analysed via a phase-plane analysis, which is not applicable here due to the presence of the non-local diffusion operator. Instead, we apply fractional calculus results available in the literature and a Lyapunov functional. In addition we discuss the monotonicity of the waves in terms of a control parameter and prove their dynamic stability in case they are monotone.  相似文献   

6.
This paper is concerned with the monotonicity and uniqueness of traveling waves for a reaction-diffusion model with quiescent stage. We first obtain the exponential decay rate of wave profiles, and then we show that any profile is strictly monotone by using the strong comparison principle. Furthermore, we prove the uniqueness (up to translation) of all traveling waves including even the waves with minimal speed.  相似文献   

7.
We study here instability problems of standing waves for the nonlinear Klein–Gordon equations and solitary waves for the generalized Boussinesq equations. It is shown that those special wave solutions may be strongly unstable by blowup in finite time, depending on the range of the wave's frequency or the wave's speed of propagation and on the nonlinearity.  相似文献   

8.
A universal model for the interaction of long nonlinear waves and packets of short waves with long linear carrier waves is given by a system in which an equation of Korteweg–de Vries (KdV) type is coupled to an equation of nonlinear Schrödinger (NLS) type. The system has solutions of steady form in which one component is like a solitary-wave solution of the KdV equation and the other component is like a ground-state solution of the NLS equation. We study the stability of solitary-wave solutions to an equation of short and long waves by using variational methods based on the use of energy–momentum functionals and the techniques of convexity type. We use the concentration compactness method to prove the existence of solitary waves. We prove that the stability of solitary waves is determined by the convexity or concavity of a function of the wave speed.  相似文献   

9.
The introductory part of this paper contains an overview of known results about elementary and delta shock solutions to Riemann problem for well known Chaplygin gas model (nowadays used in cosmological theories for dark energy) in terms of entropic shadow waves. Shadow waves are introduced in [17] and they are represented by shocks depending on a small parameter ε with unbounded amplitudes having a distributional limit involving the Dirac delta function. In a search for admissible solutions to all possible cases of mutual interactions of waves arising from double Riemann initial data we found same cases that cannot be resolved with already known types of elementary or shadow wave solutions. These cases are resolved by introducing a sequence of higher order shadow waves depending on integer powers of ε. It is shown that such waves have a distributional limit but only until some finite time T.  相似文献   

10.
We study the existence, uniqueness, and asymptotic stability of time periodic traveling wave solutions to a periodic diffusive Lotka–Volterra competition system. Under certain conditions, we prove that there exists a maximal wave speed c? such that for each wave speed c?c?, there is a time periodic traveling wave connecting two semi-trivial periodic solutions of the corresponding kinetic system. It is shown that such a traveling wave is unique modulo translation and is monotone with respect to its co-moving frame coordinate. We also show that the traveling wave solutions with wave speed c<c? are asymptotically stable in certain sense. In addition, we establish the nonexistence of time periodic traveling waves for nonzero speed c>c?.  相似文献   

11.
We are concerned with the stability of steady multi-wave configurations for the full Euler equations of compressible fluid flow. In this paper, we focus on the stability of steady four-wave configurations that are the solutions of the Riemann problem in the flow direction, consisting of two shocks, one vortex sheet, and one entropy wave, which is one of the core multi-wave configurations for the two-dimensional Euler equations. It is proved that such steady four-wave configurations in supersonic flow are stable in structure globally, even under the BV perturbation of the incoming flow in the flow direction. In order to achieve this, we first formulate the problem as the Cauchy problem (initial value problem) in the flow direction, and then develop a modified Glimm difference scheme and identify a Glimm-type functional to obtain the required BV estimates by tracing the interactions not only between the strong shocks and weak waves, but also between the strong vortex sheet/entropy wave and weak waves. The key feature of the Euler equations is that the reflection coefficient is always less than $1$, when a weak wave of different family interacts with the strong vortex sheet/entropy wave or the shock wave, which is crucial to guarantee that the Glimm functional is decreasing. Then these estimates are employed to establish the convergence of the approximate solutions to a global entropy solution, close to the background solution of steady four-wave configuration.  相似文献   

12.
The Riemann problem for two-dimensional isentropic Euler equations is considered. The initial data are three constants in three fan domains forming different angles. Under the assumption that only a rarefaction wave, shock wave or contact discontinuity connects two neighboring constant initial states, it is proved that the cases involving three shock or rarefaction waves are impossible. For the cases involving one rarefaction (shock) wave and two shock (rarefaction) waves, only the combinations when the three elementary waves have the same sign are possible (impossible).  相似文献   

13.
We are concerned with global entropy solutions to the relativistic Euler equations for a class of large initial data which involve the interaction of shock waves and rarefaction waves. We first carefully analyze the global behavior of the shock curves, the rarefaction wave curves, and their corresponding inverse curves in the phase plane. Based on these analyses, we use the Glimm scheme to construct global entropy solutions to the relativistic Euler equations for the class of large discontinuous initial data.Received: May 23, 2004  相似文献   

14.
This paper studies the stability of a family of traveling wave solutions to the system proposed by Lane et al. [D.C. Lane, J.D. Murray, V.S. Manoranjan, Analysis of wave phenomena in a morphogenetic mechanochemical model and an application to post-fertilization waves on eggs, IMA J. Math. Appl. Med. Biol. 4 (4) (1987) 309-331], to model a pair of mechanochemical phenomena known as post-fertilization waves on eggs. The waves consist of an elastic deformation pulse on the egg's surface, and a free calcium concentration front. The family is indexed by a coupling parameter measuring contraction stress effects on the calcium concentration. This work establishes the spectral, linear and nonlinear orbital stability of these post-fertilization waves for small values of the coupling parameter. The usual methods for the spectral and evolution equations cannot be applied because of the presence of mixed partial derivatives in the elastic equation. Nonetheless, exponential decay of the directly constructed semigroup on the complement of the zero eigenspace is established. We show that small perturbations of the waves yield solutions to the nonlinear equations decaying exponentially to a phase-modulated traveling wave.  相似文献   

15.
In this paper we revisit the existence of traveling waves for delayed reaction-diffusion equations by the monotone iteration method. We show that Perron Theorem on existence of bounded solution provides a rigorous and constructive framework to find traveling wave solutions of reaction-diffusion systems with time delay. The method is tried out on two classical examples with delay: the predator-prey and Belousov-Zhabotinskii models.  相似文献   

16.
Modulational, Benjamin-Feir, instability is studied for the down-stream evolution of surface gravity waves. An explicit solution, the soliton on finite background, of the NLS equation in physical space is used to study various phenomena in detail. It is shown that for sufficiently long modulation lengths, at a unique position where the largest waves appear, phase singularities are present in the time signal. These singularities are related to wave dislocations and lead to a discrimination between successive ‘extreme’ waves and much smaller intermittent waves. Energy flow in opposite directions through successive dislocations at which waves merge and split, causes the large amplitude difference. The envelope of the time signal at that point is shown to have a simple phase plane representation, and will be described by a symmetry breaking unfolding of the steady state solutions of NLS. The results are used together with the maximal temporal amplitude MTA, to design a strategy for the generation of extreme (freak, rogue) waves in hydrodynamic laboratories.  相似文献   

17.
王连堂 《东北数学》1996,12(3):319-327
一个声波散射区域的重建方法与唯一性定理@王连堂...  相似文献   

18.
In this paper, we investigate the spatial dynamics of a nonlocal and time-delayed reaction-diffusion system, which is motivated by an age-structured population model with distributed maturation delay. The spreading speed c*, the existence of traveling waves with the wave speed c?c*, and the nonexistence of traveling waves with c<c* are obtained. It turns out that the spreading speed coincides with the minimal wave speed for monotone traveling waves.  相似文献   

19.
We consider a class of semilinear wave equations with a small parameter and nonlinearities such that the equations have exact kink-type solutions. The main result consists in obtaining sufficient conditions for the nonlinearities under which the interaction of kinks preserves the sine-Gordon scenario. This means that the interaction occurs without changing the waves shape and with shifts of trajectories.  相似文献   

20.
Semi-hyperbolic patches are the regions in which one family out of two nonlinear families of characteristics starts on sonic curves and ends on transonic shock waves. This type of region appears frequently in the two-dimensional Riemann problem for the Euler equations and its simplified models and a few other situations. We construct a semi-hyperbolic patch of solution to the two-dimensional nonlinear wave system with Chaplygin gas equation of state by approaching the problem as a Goursat-type boundary value problem which has a sonic curve as the degenerate boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号