首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cylindrical shells of arbitrary wall thickness subjected to uniform radial tensile or compressive dead-load traction are investigated. The material of the shell is assumed to be homogeneous, isotropic, compressible and hyperelastic. The stability of the finitely deformed state and small, free, radial vibrations about this state are investigated using the theory of small deformations superposed on large elastic deformations. The governing equations are solved numerically using both the multiple shooting method and the finite element method. For the finite element method the commercial program ABAQUS is used.1 The loss of stability occurs when the motions cease to be periodic. The effects of several geometric and material properties on the stress and the deformation fields are investigated.  相似文献   

2.
A theory is formulated for the finite deformation of a thin membrane composed of homogeneous elastic material which is isotropic in its undeformed state. The theory is then extended to the case of a small deformation superposed on a known finite deformation of the membrane. As an example, small deformations of a circular cylindrical tube which has been subjected to a finite homogeneous extension and inflation are considered and the equations governing these small deformations are obtained for an incompressible material. By means of a static analysis the stability of cylindrically symmetric modes for the inflated and extended cylinder with fixed ends is determined and the results are verified by a dynamic analysis. The stability is considered in detail for a Mooney material. Methods are developed to obtain the natural frequencies for axially symmetric free vibrations of the extended and inflated cylindrical membrane. Some of the lower natural frequencies are calculated for a Mooney material and the methods are compared.  相似文献   

3.
The linearized equations governing the deformations of incompressible elastic bodies are discussed. The Dirichlet problem is formulated for this system of equations using the theory of elliptic systems due to Douglis and Nirenberg. A uniqueness theorem is proved. Necessary and sufficient conditions for uniqueness of solution to the Dirichlet problem are obtained for small deformations of a Mooney-Rivlin material which has been subjected to a finite homogeneous biaxial deformation.  相似文献   

4.
The elastic stability of a rubber-like, thick-walled tube which is subjected to finite torsional deformation is investigated both theoretically and experimentally. The analysis is based on the theory of finite elastic deformations, in cojunction with the method of small displacements superposed on large elastic deformations. The governing field equations are solved by a numerical scheme which determines the critical buckling torque and the associated buckling mode of the tube. The predicted results compare closely with the experimental measurements of the buckling of thick-walled silicone rubber tubes tested under finite twist.  相似文献   

5.
A thick rectangular plate of incompressible isotropic elastic material is subjected to a pure homogeneous deformation by tensile forces or thrusts applied to a pair of opposite faces. The theory of small deformations superposed on finite deformations is applied to determine the critical conditions under which bifurcation solutions (i.e. adjacent equilibrium positions) can exist. The adjacent equilibrium positions considered are those for which the superposed deformation is two-dimensional and is coplanar with the loading force and the thickness direction of the plate, the faces of the plate normal to its thickness being force-free. A number of theorems relating to the critical conditions for superposed deformations of the flexural and barreling types are derived under conditions on the strain-energy function more general than those employed in earlier work. It is also shown how these results can be applied to the determination of the bifurcation conditions corresponding to any specified strain-energy function.  相似文献   

6.
We consider a quarter-plane of compressible hyperelastic material of harmonic-type undergoing finite plane deformations. The plane is subjected to mixed (free–fixed) boundary conditions. In contrast to the analogous case from classical linear elasticity, we find that the deformation field is smooth in the vicinity of the vertex and is actually bounded at the vertex itself. In particular, the normal displacement remains positive eliminating the possibility of material interpenetration. Finally, explicit expressions for Cauchy and Piola stress distributions are obtained in the vicinity of the vertex.  相似文献   

7.
应用连续介质力学有限变形理论,分析了不可压电活性聚合物球壳在外加电场及内压作用下发生非对称变形的力电不稳定性问题。文中给出了不同外加电场下球壳的变形曲线和应力分布曲线, 结果表明对壁厚小于临界壁厚值的薄壁球壳,当内压大于临界内压值时,球壳可以产生不稳定的非对称变形。文中求得了球壳发生不稳定变形的临界壁厚及临界内压,探讨了外加电场对两个临界值的影响规律,同时讨论了外加电场对球壳中应力分布的影响。  相似文献   

8.
ABSTRACT

Accurate bushing analysis requires a locking free finite element formulation, an appropriate selection of the strain energy density function, and an adequate use of bulk modulus to assure numerical stability and accuracy. In this paper, the pressure projection finite element method is employed. The method projects displacement-calculated pressure onto a lower order pressure field, based on the Babuska-Brezzi condition, to avoid volumetric locking and pressure oscillation. Mooney-Rivlin and Cubic strain energy density functions are used to study the material effect on the predicted rubber behavior in tension-compression and shear deformation modes, and the need to use a higher order strain energy density function for bushing analysis is identified. The effect of bulk modulus on bonded rubber behavior in bushings with respect to bushing shape factor is studied, and the minimum allowable bulk modulus to impose incompressibility in bushing analysis is characterized. The load-deflection response of annular bushings subjected to axial, torsional, and radial deformations are analyzed and results are compared to linear approximations. An effort is made to demonstrate how a Mooney-Rivlin model cannot capture load-displacement nonlinearities in bushing axial and torsional deformations. Two- and three-dimensional results are compared and the applicability of two-dimensional analysis is discussed.  相似文献   

9.
A lower bound on maximum deformation is determined for rigid-plastic structures subjected to time dependent loads. This bound on deformation amalgamates and slightly extends two previous bounds. It is easily calculated based on an assumed velocity field that is kinematically admissible. Comparisons are made between this bound, the complementary upper bound by Robinson[5], and the analytical solution for maximum deformation of five different structural elements. Thus, characteristics of the structure and applied tractions that affect accuracy of the bound are examined. In two cases, the stress field transition from bending at small deformations to membrane stresses at large deformation is demonstrated.  相似文献   

10.
Within the framework of the direct approach to the plate theory we consider the infinitesimal deformations of a plate made of hyperelastic materials taking into account the non-homogeneously distributed initial stresses. Here we consider the plate as a material surface with 5 degrees of freedom (3 translations and 2 rotations). Starting from the equations of the non-linear elastic body and describing the small deformations superposed on the finite deformation we present the two-dimensional constitutive equations for a plate. The influence of initial stresses in the bulk material on the plate behavior is considered.  相似文献   

11.
A postbuckling analysis is presented for a shear deformable functionally graded cylindrical shell of finite length subjected to combined axial and radial loads in thermal environments. Heat conduction and temperature-dependent material properties are both taken into account. The temperature field considered is assumed to be a uniform distribution over the shell surface and varied in the thickness direction only. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The formulations are based on a higher order shear deformation shell theory with von Kármán–Donnell-type of kinematic nonlinearity. A boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large deflections in the postbuckling range, and initial geometric imperfections of the shell, is extended to the case of functionally graded cylindrical shells. A singular perturbation technique is employed to determine the interactive buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling response of perfect and imperfect cylindrical shells with two constituent materials subjected to combined axial and radial mechanical loads and under different sets of thermal environments. The results reveal that the temperature field and volume fraction distribution have a significant effect on the postbuckling behavior, but they have a small effect on the imperfection sensitivity of the functionally graded shell.  相似文献   

12.
Three small deformation plasticity models taking into account isotropic damage effects are presented and discussed. The models are formulated in the context of irreversible thermody-namics and the internal state variable theory. They exhibit nonlinear isotropic and nonlinear kinematic hardening. The aim of the paper is first to give a comparative study of the three models with reference to homogeneous and inhomogeneous deformations by using a general damage law. Secondly, and this is the main objective of the paper, we generalize the constitutive models to finite deformations by applying a thermodynamical framework based on the Mandel stress tensor. The responses of the obtained finite deformation models are then discussed for loading processes with homogeneous deformations.  相似文献   

13.
The strain energy density criterion due to Sih is used to predict fracture loads of two thin plates subjected to large elastic-plastic deformation. The prediction is achieved with a finite element analysis which is based on Hill's variational principle for incremental deformations capable of solving gross yielding problems involving arbitrary amounts of deformation. The computed results are in excellent agreement with those obtained in Sih's earlier analysis and with an experimental observation.  相似文献   

14.
The behaviour of thin rectangular plates when subjected to distributed transverse loading that produces plastic deformations is analysed in a relatively simple manner. The contour lines approach is used in conjunction with Ilyushin's theory for small plastic deformation. The governing nonlinear differential equations are solved using an iterative technique together with quadratic extrapolation scheme for linearisation and finite difference method for spatial discretisation. Some comparisons are made with previously obtained results as available in the literature. All details are explained by graphs. Numerical results show the accuracy and efficiency of this new approach.  相似文献   

15.
A polymer network can imbibe copious amounts of solvent and swell, the resulting state is known as a gel. Depending on its constituents, a gel is able to deform under the influence of various external stimuli, such as temperature, pH-value and light. In this work, we investigate the photo-thermal mechanics of deformation of temperature sensitive hydrogels impregnated with light-absorbing nano-particles. The field theory of photo-thermal sensitive gels is developed by incorporating effects of photochemical heating into the thermodynamic theory of neutral and temperature sensitive hydrogels. This is achieved by considering the equilibrium thermodynamics of a swelling gel through a variational approach. The phase transition phenomenon of these gels, and the factors affecting their deformations, are studied. To facilitate the simulation of large inhomogeneous deformations subjected to geometrical constraints, a finite element model is developed using a user-defined subroutine in ABAQUS, and by modeling the gel as a hyperelastic material. This numerical approach is validated through case studies involving gels undergoing phase coexistence and buckling when exposed to irradiation of varying intensities, and as a microvalve in microfluidic application.  相似文献   

16.
A method is proposed for constructing a system of constitutive equations of an incompressible medium with nonlinear dissipative properties with finite deformations. A scheme of the mechanical behavior of a material is used, in which the points are connected by horizontally aligned elastic, viscous, plastic, and transmission elements. The properties of each element of the scheme are described with the use of known equations of the nonlinear elasticity theory, the theory of nonlinear viscous fluids, and the theory of plastic flow of the material under conditions of finite deformations of the medium. The system of constitutive equations is closed by equations that express the relation between the deformation rate tensor of the material and the deformation rate tensor of the plastic element. Transmission elements are used to take into account a significant difference between macroscopic deformations of the material and deformations of elements of the medium at the structural level. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 3, pp. 158–170, May–June, 2009.  相似文献   

17.
A continuum-based model is presented for the mechanics of bidirectional composites subjected to finite plane deformations. This is framed in the development of a constitutive relation within which the constraint of material incompressibility is augmented. The elastic resistance of the fibers is accounted for directly via the computation of variational derivatives along the lengths of bidirectional fibers. The equilibrium equation and necessary boundary conditions are derived by virtue of the principles of virtual work statement. A rigorous derivation of the corresponding linear theory is developed and used to obtain a complete analytical solution for small deformations superposed on large. The proposed model can serve as an alternative 2D Cosserat theory of nonlinear elasticity.  相似文献   

18.
The aim of this work is to measure and model the planar anisotropy of thin steel sheets. The experimental data have been collected using the digital image correlation technique. This is a powerful tool to measure the strain field on differently shaped specimens subjected to large plastic deformations. In this manner, it is possible to observe the material behaviour under different stress-strain states, from small to large deformation conditions, on the entire specimen surface. The experimental results on smooth and notched samples have been used to characterize the flow stress curve after necking and a nonassociated plastic flow rule is proposed to describe the anisotropic behaviour of the material. To compare the experimental data with the predictions of the adopted constitutive model, a novel method, based on the image correlation results, has been implemented.  相似文献   

19.
20.
以Lee的有限变形弹塑性连续体的最小加速度原理为基础,结合有限差分法建立了两端铰支轴向不可移的四棱锥夹芯梁受到横向均布冲击载荷时的动力学控制方程,并且考虑了横向剪切效应.通过对简支梁进行弹塑性动力响应数值计算和分析,证明了四棱锥夹芯梁的抗冲击性能明显优于相同质量的实心梁,芯层杆元与面板的夹角对夹芯梁的抗冲击能力有显著影响.所得结果对点阵材料夹芯梁的设计和优化有参考价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号