首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper continues the study of the inverse balayage problem for Markov chains. Let X be a Markov chain with state space A ? B2, let v be a probability measure on B2 and let M(v) consist of probability measures μ on A whose X-balayage onto B2 is v. The faces of the compact, convex set M(v) are characterized. For fixed μ?M(v) the set M(μ,v) of the measures ? of the form ?(·) = Pμ{X(S) ? ·}, where S is a randomized stopping time, is analyzed in detail. In particular, its extreme points and edge are explicitly identified. A naturally defined reversed chain X, for which v is an inverse balayage of μ, is introduced and the relation between X and X^ is studied. The question of which ? ? M(μ, v) admit a natural stopping time S? of X (not involving an independent randomization) such that ?(·) = Pμ{X(S?) ? ·}, is shown to have rather different answers in discrete and continuous time. Illustrative examples are presented.  相似文献   

2.
The paper presents one of the ways to construct all the locally compact extensions of a given Tychonoff space T. First, there proved the “local” variant of the Stone-C?ech theorem on “completely regular” Riesz spaces X(T) of continuous bounded functions on T with no unit function, in general, but with a collection of local units. In Theorem 1 it is proved that all the functions from X(T) can be “completely regularly” extended on the largest locally compact extension βxT. Theorem 3 states, that βxT are presenting, in fact, all the locally compact extensions of T.  相似文献   

3.
Let X be a Banach space, B a closed ball centered at the origin in X, and T: BX a pseudo-contractive mapping (i.e., (λ ? 1) ∥x ? y∥ ? ∥(λI ? T)(x) ? (λI ? T) (y)∥ for all x, y?B and λ > 1). It is shown here that the antipodal boundary condition: T(x) = ?T(?x) for all x?δB assures existence of a fixed point of T in B provided that the ball B has the fixed point property with respect to non-expansive self-mappings. Also included are some fixed point theorems which involve the Leray-Schauder condition.  相似文献   

4.
A tournament T on any set X is a dyadic relation such that for any x, yX (a) (x, x) ? T and (b) if xy then (x, y) ∈ T iff (y, x) ? T. The score vector of T is the cardinal valued function defined by R(x) = |{yX : (x, y) ∈ T}|. We present theorems for infinite tournaments analogous to Landau's necessary and sufficient conditions that a vector be the score vector for some finite tournament. Included also is a new proof of Landau's theorem based on a simple application of the “marriage” theorem.  相似文献   

5.
Let X be a complex Banach space and let B(X){\mathcal{B}(X)} be the space of all bounded linear operators on X. For x ? X{x \in X} and T ? B(X){T \in \mathcal{B}(X)}, let rT(x) = limsupn ? ¥ || Tnx|| 1/n{r_{T}(x) =\limsup_{n \rightarrow \infty} \| T^{n}x\| ^{1/n}} denote the local spectral radius of T at x. We prove that if j: B(X) ? B(X){\varphi : \mathcal{B}(X) \rightarrow \mathcal{B}(X)} is linear and surjective such that for every x ? X{x \in X} we have r T (x) = 0 if and only if rj(T)(x) = 0{r_{\varphi(T)}(x) = 0}, there exists then a nonzero complex number c such that j(T) = cT{\varphi(T) = cT} for all T ? B(X){T \in \mathcal{B}(X) }. We also prove that if Y is a complex Banach space and j:B(X) ? B(Y){\varphi :\mathcal{B}(X) \rightarrow \mathcal{B}(Y)} is linear and invertible for which there exists B ? B(Y, X){B \in \mathcal{B}(Y, X)} such that for y ? Y{y \in Y} we have r T (By) = 0 if and only if rj( T) (y)=0{ r_{\varphi ( T) }(y)=0}, then B is invertible and there exists a nonzero complex number c such that j(T) = cB-1TB{\varphi(T) =cB^{-1}TB} for all T ? B(X){T \in \mathcal{B}(X)}.  相似文献   

6.
For a measure μ on Rn let ((Bt, Pμ) be Brownian motion in Rn with initial distribution μ. Let D be an open subset of Rn with exit time ζ ≡ inf {t > 0: Bt ? D}. In the case where D is a Green region with Green function G and μ is a measure in D such that Gμ is not identically infinite on any component of D, we have given necessary and sufficient conditions for a measure ν in D to be of the form ν(dx) = Pμ(BT ? dx, T <ζ), where T is some natural stopping time for (Bt), and we have applied this characterization to show that a measure ν in D satisfies Gν ? Gμ iff ν is of the form ν(dx) = Pα(BT ? dx, T <ζ) + β(dx), where T is some natural stopping time for (Bt) and α and β are measures in D such that α + β = μ and β lives on a polar set. We have proved analogous results in the case where D = R2 and μ is a finite measure on R2 such that ∫ log+xdu(x) < ∞, and applied this to give a characterization of the stopping times T for Brownian motion in R2 such that (log+BTt∥)0<t<∞ is Pμ-uniformly integrable.  相似文献   

7.
Let (X, ∑, μ) be a σ-finite measure space and Lp(μ) = Lp(X, ∑, μ), 1 ? p ? ∞, the usual Banach spaces of complex-valued functions. Let {Tt: t ? 0} be a strongly continuous semigroup of positive Lp(μ) operators for some 1 ? p < ∞. Denote by Rλ the resolvent of {Tt}. We show that f?Lp(μ) implies λRλf(x) → f(x) a.e. as λ → ∞.  相似文献   

8.
Let X be a Markov chain, let A be a finite sunset of its countable state space. let ?A consist of states in A′ that can be reached in one step from A and let v be a prescribed probability measure on ?A. In this paper we study the following inverse exit problem: describe and analyze the set M(v) of probability measures μ on A such that Pμ {X(T)?·}=v(·) where T= inl{k: X(k)?A′} is the first exit time from A. Characterizations are provided for elements of M(v), extreme points of M(v) and those measures in M(v) that are maximal with respect to a partial ordering induced by excessive functions. Potential theoretic aspects of the problem and one-dimensional birth and death processes are treated in detail, and examples are given that illustrate implications and limitations of the theory.  相似文献   

9.
Let X be a v-set, v≥3. A transitive triple (x,y,z) on X is a set of three ordered pairs (x,y),(y,z) and (x,z) of X. A directed triple system of order v, denoted by DTS(v), is a pair (X,?), where X is a v-set and ? is a collection of transitive triples on X such that every ordered pair of X belongs to exactly one triple of ?. A DTS(v) is called pure and denoted by PDTS(v) if (x,y,z)∈? implies (z,y,x)??. An overlarge set of disjoint PDTS(v) is denoted by OLPDTS(v). In this paper, we establish some recursive constructions for OLPDTS(v), so we obtain some results.  相似文献   

10.
Let X be a Banach space with the dual space X1 to be uniformly convex, let D ? X be open, and let T:D? → X be strongly accretive (i.e., for some k < 1: (λ ? k)∥ u ? v∥ ? ∥(λ ? 1)(u ? v)+ T(u) ? T(v)∥ for all u, v ? D? and λ > k). Suppose T is demicontinuous and strongly accretive and suppose there exists z?D satisfying: T(x) t(x ? z) for all x??D and t < 0. Then it is shown that T has a unique zero in D?. This result is then applied to the study of existence of zeros of accretive mappings under apparently different types of boundary conditions on T.  相似文献   

11.
Letμ be a positive unit Borel measure with infinite support on the interval [?1, 1]. LetP n(x, μ) denote the monic orthogonal polynomial of degreen associated withμ, and letv n(μ) denote the unit measure with mass 1/n at each zero ofP n(x, μ). A carrier is a Borel subset of the support ofμ having unitμ-measure, and a measurev is carrier related toμ when it has the same carriers asμ. We demonstrate that for each carrierB of positive capacity there is a measurev, which is carrier related toμ, such that the equilibrium measure of the carrierB is the weak limit of the sequence {v n(v)} n =1/∞ .  相似文献   

12.
Given a probability space (X, μ) and a bounded domain Ω in ?d equipped with the Lebesgue measure |·| (normalized so that |Ω| = 1), it is shown (under additional technical assumptions on X and Ω) that for every vector-valued function u ∈ Lp (X, μ; ?d) there is a unique “polar factorization” u = ?Ψs, where Ψ is a convex function defined on Ω and s is a measure-preserving mapping from (X, μ) into (Ω, |·|), provided that u is nondegenerate, in the sense that μ(u?1(E)) = 0 for each Lebesgue negligible subset E of ?d. Through this result, the concepts of polar factorization of real matrices, Helmholtz decomposition of vector fields, and nondecreasing rearrangements of real-valued functions are unified. The Monge-Ampère equation is involved in the polar factorization and the proof relies on the study of an appropriate “Monge-Kantorovich” problem.  相似文献   

13.
A Banach space operator TB(X) satisfies Browder's theorem if the complement of the Weyl spectrum σw(T) of T in σ(T) equals the set of Riesz points of T; T is polaroid if the isolated points of σ(T) are poles (no restriction on rank) of the resolvent of T. Let Φ(T) denote the set of Fredholm points of T. Browder's theorem transfers from A,BB(X) to S=LARB (resp., S=AB) if and only if A and B (resp., A and B) have SVEP at points μΦ(A) and νΦ(B) for which λ=μνσw(S). If A and B are finitely polaroid, then the polaroid property transfers from AB(X) and BB(Y) to LARB; again, restricting ourselves to the completion of XY in the projective topology, if A and B are finitely polaroid, then the polaroid property transfers from AB(X) and BB(Y) to AB.  相似文献   

14.
This paper is a continuation of the study made in [38]. Using Douglas' operator range theorem and Crimmins' corollary we obtain several new results on the “square-integrability of operator-valued functions with respect to a nonnegative hermitian measure”. Using these facts we are able to extend in an important way theorems on the “spectral integral of an operator-valued function” which were obtained in [38], to wit, we are able to drop assumptions that functions are closed operator-valued. We apply these results to Wiener-Masani type infinite-dimensional stationary processes, representing a purely non-deterministic process as a “moving average” and obtaining a “factorization” of its spectral density. Next, anticipating global applications of our tools, we investigate the adjoint and generalized inverse of spectral integrals. Our definition of measurability for closed-operator-valued functions plays a key role here. Finally, we partially prove a conjecture (J. Multivariate Anal. (1974), 166–209) on simpler necessary and sufficient conditions on “when is a closed densely defined operator T from Hq to Hp a spectral integral T = fΦdE?”: Let q be finite and E be of countable multiplicity for H. Then (i) TxSxp each xDT (T is E-subordinate), and (ii) E(B)T ? TE(B) each BB (T is E-commutative) implies LxpT ? TLxq each xHq (T commutes with all the cyclic projections), and thus T = fΦdE.  相似文献   

15.
A Hilbert bundle (p, B, X) is a type of fibre space p:BX such that each fibre p?1(x) is a Hilbert space. However, p?1(x) may vary in dimension as x varies in X. We generalize the classical homotopy classification theory of vector bundles to a “homotopy” classification of certain Hilbert bundles. An (m, n)-bundle over the pair (X, A) is a Hilbert bundle (p, B, X) such that the dimension of p?1(x) is m for x in A and n otherwise. The main result here is that if A is a compact set lying in the “edge” of the metric space X (e.g. if X is a topological manifold and A is a compact subset of the boundary of X), then the problem of classifying (m, n)-bundles over (X, A) reduces to a problem in the classical theory of vector bundles. In particular, we show there is a one-to-one correspondence between the members of the orbit set, [A, Gm(Cn)]/[X, U(n)] ¦ A, and the isomorphism classes of (m, n)-bundles over (X, A) which are trivial over X, A.  相似文献   

16.
Let X be a Banach space and T:XX a continuous map, which is expanding (i.e., ∥Tu ? Tv∥ ? ∥u ? v∥ for all u, v?X) and such that T(X) has a nonempty interior. Does this guarantee that T is onto? We give a counterexample in the case of X=L1(N).  相似文献   

17.
A dominating broadcast on a graph G = (V, E) is a function f: V → {0, 1, ..., diam G} such that f(v) ≤ e(v) (the eccentricity of v) for all vV and such that each vertex is within distance f(v) from a vertex v with f(v) > 0. The cost of a broadcast f is σ(f) = Σ vV f(v), and the broadcast number λ b (G) is the minimum cost of a dominating broadcast. A set X ? V(G) is said to be irredundant if each xX dominates a vertex y that is not dominated by any other vertex in X; possibly y = x. The irredundance number ir (G) is the cardinality of a smallest maximal irredundant set of G. We prove the bound λb(G) ≤ 3 ir(G)/2 for any graph G and show that equality is possible for all even values of ir (G). We also consider broadcast domination as an integer programming problem, the dual of which provides a lower bound for λb.  相似文献   

18.
Let X be a Banach space and E an order continuous Banach function space over a finite measure μ. We prove that an operator T in the Köthe-Bochner space E(X) is a multiplication operator (by a function in L(μ)) if and only if the equality T(gf,xx)=gT(f),xx holds for every gL(μ), fE(X), xX and xX.  相似文献   

19.
Let (Ω, β, μX) and (?, F, μN) be probability spaces, with f: Ω × ? ? ? a β × F|F measurable map. Define μXY on β × F by μXY(A) = μX ? μN{(x, y): (x, f(x, y)) ?A}, and let μY = (μX ? μN)of?1. An expression is determined for computing the Shannon information in the measure μXY. This expression is used to compute the information for the non-linear additive Gaussian channel, and can be used to solve the channel capacity problem.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号