首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electronic structures of Fe2, FeMn, FeCo, FeCu and FeNi have been calculated using Gaussian-76 SCF techniques. Gaussian basis sets contracted to [4s, 2p, 1d] functions are used on each atom resulting in sets of near double zeta accuracy in the valence region. The calculated UHF electronic ground state configurations for these Fe---M dimers are comparable with those experimentally determined. By examining the Mulliken atomic overlap population analysis, a correlation is found between the Mössbauer spectrum and calculated binding strengths in these dimers. Our calculations, fixed at re of 2.3 Å, show that the binding strengths decrease from FeCu, FeMn, Fe2, FeCo, FeNi.  相似文献   

2.
吸附O的Cu(110)c(2×1)表面原子结构和电子态   总被引:4,自引:0,他引:4  
采用第一性原理的密度泛函理论方法计算了清洁Cu(110)表面和吸附O原子的Cu(110) c(2×1)表面的原子结构, 结构弛豫和电子结构, 得到了各种表面结构参数. 分别计算了O原子在Cu(110)表面三个可能吸附位置吸附后的能量, 并给出了能量最低的吸附位置上各层原子的弛豫特性和态密度. 结果表明O吸附后的Cu(110)表面有附加列(added-row)再构的特性, O原子吸附在最表层铜原子上方, 与衬底Cu原子的垂直距离为0.016 nm, 以氧分子为能量基准的吸附能为-1.94 eV; 同时由于Cu 3d- O 2p态的杂化作用使得低于费米能级5.5~6.0 eV的范围内出现了局域的表面态. 计算得到清洁的和氧吸附的Cu(110)表面的功函数分别为4.51 eV和4.68 eV. 电子态密度的结果表明:在Cu(110) c(2×1) 表面O吸附的结构下, 吸附O原子和金属衬底之间的结合主要是由于最表层Cu原子3d态和O原子2p态的相互作用.  相似文献   

3.
从印楝植物内生真菌Phomopsis sp.培养液中分离得到的4-acetoxymultiplolide(1)和1-acetoxymultiplo-lide(2)在室温及水存在下能够相互转化. 提出二者相互转化最可能的4个途径(机理A~D). 在B3LYP/6-311+G(d,p)水平进行气相条件的优化, 结果表明, 无水催化的机理A中TS1和TS2的活化能均显著大于120 kJ/mol, 2个分子水催化的机理D中TS1和TS2的活化能则显著降低. 计算结果显示水的溶剂化效应能进一步降低机理D中TS1和TS2的活化能. 在MP2/6-311++G(2d,2p)//B3LYP/6-311+G(d,p)水平计算了单点能, 得到在水相时机理D中TS1和TS2的活化能分别为106.24和107.37 kJ/mol. 因此, 机理D是化合物1 和2在室温下及水存在时相互转化最可能的途径, 该途径是一种特殊的水催化分子内酯的醇解反应, 也是一种经典的亲核加成反应, 通过一种新的叔醇中间体实现.  相似文献   

4.
The molecular structure (equilibrium geometry) and binding energy of the dimethylzinc (DMZn)-hydrogen selenide (H2Se) adduct, (CH3)2Zn:SeH2, have been computed with ab initio molecular orbital and density functional theory (DFT) methods and, where possible, compared with experimental results. The structure of the precursors DMZn and H2Se are perturbed to only a small extent upon adduct formation. (CH3)2Zn:SeH2 was found to be 3 kcal mol−1 less stable than the precursors at the B3LYP/6-311 + G(2d,p)//B3LYP/6-311 + G(2d,p) level of computation, indicating that the (CH3)2Zn:SeH2 adduct is unlikely to be a stable gas-phase species under chemical vapour deposition conditions. Further calculations at the B3LYP/6-311 + G(2d,p)//B3LYP/6-311 + G(2d,p) level of computation suggest that the 1:2 adduct species, (CH3)2Zn:(SeH2)2, is much less stable than the 1:1 adduct and consequently the precursors by 19 kcal mol−1.  相似文献   

5.
A gas electron diffraction study of cyclobutylsilane results in a mixture of equatorial and axial conformers, with the equatorial confomer slightly more stable (Δ G = 0.8 ± 0.4 kJ mol−1). The cyclobutyl ring is distorted with the adjacent bonds longer (C1---C2 = 1.573 (4) Å) than the opposite bonds (C2---C3 = 1.557 (4) Å). The experimental values for the energy difference between the two conformers and for the geometric parameters are reproduced very well by ab initio calculations. The importance of silicon 3d orbitals in the interpretation of ring distortion is ambiguous, but on the basis of the ab initio calculations the participation of silicon 3d functions is negligible.  相似文献   

6.
Fukui函数、局域软度、广义Fukui函数以及广义软度通常被称为反应描述符。使用它们研究和探讨了HCl与不对称烯烃以及溴苯硒与不对称苯乙烯的亲电加成反应的区位选择性。在MP2/6-311++G(d, p)理论水平下,采用有限差分方法计算这些反应描述符,同时也使用ABEEMσπ方法进行了计算。ABEEMσπ模型下的局域软度和广义局域软度,分别结合局域硬-软酸碱(HSAB)原理,得出亲电试剂氯化氢与溴苯硒,更容易进攻不对称乙烯和苯乙烯中的马氏碳原子,符合马氏规则。而有限差分方法不能完全地解释该系列反应的区位选择性。此外,主要产物所对应的马氏碳原子的广义局域软度值,就能够预测出此类反应的活性序列,所得结果与速率常数有很好的关联。  相似文献   

7.
通过对一些典型超价分子进行计算和分析,得出了超价分子"d轨道参与"(即外层d轨道杂化和d-pπ键概念)不尽合理的结论,并提出了能与实验事实相符的解释方法。此外,本文还阐述了计算化学中基组d函数与d轨道的关系:二者并不等价。  相似文献   

8.
The geometrical and energetical parameters of hydrogen fluoride and hydrogen chloride crystals are calculated using the periodic Hartree–Fock method with 6-31G and 6-31G(d,p) basis sets. The comparison of the stabilisation energies reveals that HCl crystals are about 75% less stable than HF crystals. The activation energy for collective proton movements are computed and discussed in view of data of isolated infinite chains. The barriers of 13.1 and 40.0 kcal mol−1 at 6-31G(d,p) level are found for HF and HCl crystals.  相似文献   

9.
采用[CCSD(T)]-F12方法和aug-cc-pVTZ基组,同时引入中心键函数(3s3p2d1f1g)构建了Kr-C2H2体系的高精度四维势能面.在构建势能面时考虑了分子间的振动方式及C2H2单体内的ν1对称伸缩和ν3反对称伸缩振动.将计算得到的四维势能面在Q1方向和Q3方向分别做积分得到C2H2单体分别处于振动基态和(ν1,ν3)=(1,1)激发态的平均势能面.计算结果表明,这2个平均势能面均存在2个等价的T型全局极小值和2个等价线性极小值.全局极小值的几何构型位于R=0.41 nm,θ=65.6°/114.4°,势阱深度为151.88 cm-1.对径向部分采用离散变量表象法(DVR),角度部分采用有限基组表象法(FBR),并结合Lanczos循环算法计算了Kr-C2H2的振转能级和束缚态.计算结果表明,复合物在(ν1,ν3)=(1,1)区域的带心位移为-1.48 cm-1,表现为红移,与实验值-1.38 cm-1很接近;计算得到的红外跃迁频率也与实验值相吻合,说明得到的从头算势能面具有高精度.  相似文献   

10.
High-level ab initio (MP2/6-311++G(2d,2p) geometry, Gaussian-2, MP4(SDTQ) and QCISD(T) binding energies) and density-functional (Becke3LYP/6-311++G(2df,2pd)) calculations have been performed on the charge-transfer complex between water and carbon dioxide. The complex appears to have two equivalent non-planar minima of Cs symmetry. Minima are separated by transition states with C1 symmetry, whereas the totally planar structure with C2v symmetry is a second-order transition state. All the critical points lie at approximately the same energy (less than 0.05 Kj mol−1 difference). Therefore, the experimentally observable structure should be planar. The best equilibrium intermolecular distance for this complex calculated at the MP2/6-311++G(2d,2p) level is 2.800 Å. Our best estimate of the observable intermolecular distance (corrected for anharmonicity) is 2.84 Å, in agreement with the experimentally derived value of 2.836 Å. Our best estimate of the binding energy at the QCISD(T) level, taking into account the variation of the distance owing to anharmonicity and the use of more sophisticated theoretical treatments, is −12.0 ± 0.2 kJ mol−1. Our best estimate of the barrier to internal rotation, also at the MP2/6-311++G(2d,2p) level, is 4.0 kJ mol−1, outside the error limits of the experimental determination (3.64 ± 0.04 kJ mol−1). Density functional theory at the level employed here gives an equilibrium intermolecular distance that is too large (2.857 Å), a binding energy that is too small (8.1 kJ mol−1), attributable neither to geometry nor to the basis set, and also a barrier to internal rotation that is slightly too small (3.39 kJ mol−1). The overall picture is, however, reasonably good.  相似文献   

11.
Relative stabilities of uracil tautomers and cations formed by gas-phase protonation were studied computationally with the B3LYP, MP2, QCISD, and QCISD(T) methods and with basis sets expanding from 6-31G(d,p) to 6-311+G(3df,2p). In accordance with a previous density functional theory study, the dioxo tautomer 1a was the most stable uracil isomer in the gas phase. Gibbs free energy calculations using effective QCISD(T)/6-311+G(3df,2p) energies suggested >99.9% of 1a at equilibrium at 523 K. The most stable ion isomer corresponded to N-1 protonated 2,4-dihydroxypyrimidine, which however is not formed by direct protonation of 1a. The topical proton affinities in 1a followed the order O-8 > O-7 > C-5 > N-3 > N-1. The thermodynamic proton affinity of 1a was calculated as 858 kJ mol−1 at 298 K. A revision is suggested for the current estimate included in the ion thermochemistry database.  相似文献   

12.
Using the recursive-Green-function (RGF) technique, we investigate the surface states of an electrified binary semiconductor, modelled by a chain of alternating s and p orbitals. The RGF provides the surface density of states (SDOS), which displays a quasi-Stark-ladder distribution of the energy levels in the two bands at the surface atom. The SDOS are discussed in terms of the applied-field and surface-perturbation parameters.  相似文献   

13.
有机/无机钙钛矿是一类极具潜质的光电材料,目前已实现超过20%的光电转化效率。本文采用第一性原理对有机/无机混合钙钛矿CH3NH3PbxSn1-xI3 (x = 0-1)的结构及光电特性进行了理论研究。结果表明,范德华力(VDW)在优化钙钛矿结构中起着重要的作用,考虑范德华力可减小Pb/Sn―I键长,从而减小体系体积。通过分析甲胺离子CH3NH3+的态密度和Bader电荷,我们发现其对前线轨道没有贡献,仅仅扮演电荷供体的角色。Pb/Sn与I之间同时存在共价键和离子键相互作用。价带顶(VBM)主要是由I 5p以及Pb 6s (Sn 5s)杂化组成,而导带底(CBM)主要由Pb 6p (Sn 5p)轨道组成。在可见光区,随着波长的增加,体系吸收强度呈现整体下降趋势;随着Sn/Pb比值逐渐增大,吸收强度呈现增大趋势。CH3NH3SnI3在可见光区表现出较佳的吸收光谱特性。  相似文献   

14.
15.
Methane activation by transition metal species has been extensively investigated over the past few decades. It is observed that ground-state monocations of bare 3d transition metals are inert toward CH4 at room temperature because of unfavorable thermodynamics. In contrast, many mono-ligated 3d transition metal cations, such as MO+ (M = Mn, Fe, Co, Cu, Zn), MH+ (M = Fe, Co), and NiX+ (X = H, CH3, F), as well as several bis-ligated 3d transition metal cations including OCrO+, Ni(H)(OH)+, and Fe(O)(OH)+ activate the C―H bond of methane under thermal collision conditions because of the pronounced ligand effects. In most of the above-mentioned examples, the 3d metal atoms are observed to cooperate with the attached ligands to activate the C―H bond. Compared to the extensive studies on active species comprising of middle and late 3d transition metals, the knowledge about the reactivity of early 3d transition metal species toward methane and the related C―H activation mechanisms are still very limited. Only two early 3d transition metal species HMO+ (M = Ti and V) are discovered so far to activate the C―H bond of methane via participation of their metal atoms. In this study, by performing mass spectrometric experiments and density functional theory calculations, we have identified that the diatomic vanadium boride cation (VB+) can activate methane to produce a dihydrogen molecule and carbon-boron species under thermal collision conditions. The strong electrostatic interaction makes the reaction preferentially proceed the V side. To generate experimentally observed product ions, a two-state reactivity scenario involving spin conversion from high-spin sextet to low-spin quartet is necessary at the entrance of the reaction. This result is consistent with the reported reactions of 3d transition metal species with CH4, in which the C―H bond cleavage generally occurs in the low-spin states, even if the ground states of the related active species are in the high-spin states. For VB+ + CH4, the insertion of the synergetic V―B unit (rather than a single V or B atom) into the H3C―H bond causes the initial C―H bond activation driven by the strong bond strengths of V―CH3 and B―H. The mechanisms of methane activation by VB+ discussed in this study may provide useful guidance to the future studies on methane activation by early transition metal systems.  相似文献   

16.
The nature of the lithium—oxygen bond in the lithium—formaldehyde system (a prototype of the ketyl radical—alkali metal ion pairs) is examined by unrestricted Hartree—Fock calculations using minimum and extended Slater-type bases and ghost orbital methods. Two states of the equilibrium C2v symmetry structure are considered: 2B1, which is a π radical, and 2A1, Which is a σ radical. In contrast with the results of Ha et al. [10], the 2B1, state is found to have a slightly lower energy than 2A 1, When only s-type basis functions are used for the lithium atom; the 2B1, state is further stabilized if 2p functions at the lithium centre are included. Inclusion of 2p orbitals on lithium greatly exaggerates the charge density at the lithium atom in single-ζ basis calculations on the 2B1 state, and earlier calculations by Bernardi and Pedulli [8, 9] are found severely to underestimate the polarity of this state. A much better wave-function is obtained from double-ζ basis calculations, and it is concluded that the net charge of Li in the 2B1, state is close to + 1. The 2A1, state, on the other hand, is essentially homopolar.  相似文献   

17.
The isotropic Compton profile of vanadium carbide has been measured using 59.54 keV gamma radiation. To compare the experimental result with theory the Compton profile has been calculated within the frame work of the renormalized free atom model considering different V 3d C 2p shell electronic configurations. The electronic shell configuration of V 3d2.2C 2p4.8 has been found to be appropriate for vanadium carbide.  相似文献   

18.
Quantum chemical study of neutral and single charged palladium clusters   总被引:7,自引:0,他引:7  
The extended Hückel (EH) method with an electrostatic two-body correction, has been used in order to determine the structures of small single charged Pdn clusters with n=2–13 and to compare them with the neutral ones. The results for Pd2 and Pd3 are compared with density functional (DFT) calculations. Both cation and anion formations were found to strengthen the clusters due to the bonding character of their HOMO and antibonding nature of LUMO. The twin formation with bond lengths significantly smaller than those in the bulk palladium and in the corresponding neutral particles was found to be the preferential way of growth for anionic clusters; cationic clusters show a more complicated behavior. The promotion of occupation of Pd 5s AOs is suggested to be responsible for the formation of 3D structures, whereas the stability of the planar configurations is attributed to the appearance of the vacancy in the valence 4d-shell. As a result of stronger intermetallic interaction in charged clusters, both excess and deficit of electron density were found to cause the significant broadness of the d-zone.  相似文献   

19.
The cubic phase structure of 4'-n-hexadecyloxy-3'-cyanobiphenyl-4-carboxylic acid (ACBC-16) was examined by X-ray diffraction. Unlike the octadecyloxy homologue showing an Im3m-type cubic phase, the cubic phase of ACBC-16 was of Ia3d type, both on heating and on cooling, similarly to the corresponding nitro-substituted analogue (ANBC-16). The lattice dimension a at 453 K was a = 11.0 nm, 2.5% larger than the value for ANBC-16 and rather close to the value of ANBC-17 or -18. It is expected that the appearance of the cubic phase type, as a function of the number of carbon atoms n in the alkoxy chain in the ACBC-n series, is essentially the same as in the ANBC-n series, but shifted towards shorter n by 1 or 2. In the latter ANBC-n series, the cubic phase type is Ia3d for 15≤n≤18, while an Im3m type is formed for 19≤n≤21, both on heating and on cooling.  相似文献   

20.
Accurate non-relativistic variational calculations are performed for the seven lowest members of the (2)D Rydberg series (1s(2)2s2p(2), and 1s(2)2s(2)nd, n = 3, [ellipsis (horizontal)], 8) of the boron atom. The wave functions of the states are expanded in terms of all-electron explicitly correlated Gaussian basis functions and the effect of the finite nuclear mass is directly included in the calculations allowing for determining the isotopic shifts of the energy levels. The Gaussian basis is optimized independently for each state with the aid of the analytic energy gradient with respect to the Gaussian parameters. The calculations represent the highest accuracy level currently achievable for the considered states. The computed energies are compared with the available experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号