首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show that the dynamics of disordered charge density waves (CDWs) and spin density waves (SDWs) is a collective phenomenon. The very low temperature specific heat relaxation experiments are characterized by: (i) “interrupted” ageing (meaning that there is a maximal relaxation time); and (ii) a broad power-law spectrum of relaxation times which is the signature of a collective phenomenon. We propose a random energy model that can reproduce these two observations and from which it is possible to obtain an estimate of the glass cross-over temperature (typically T g≃ 100-200 mK). The broad relaxation time spectrum can also be obtained from the solutions of two microscopic models involving randomly distributed solitons. The collective behavior is similar to domain growth dynamics in the presence of disorder and can be described by the dynamical renormalization group that was proposed recently for the one dimensional random field Ising model [D.S. Fisher, P. Le Doussal, C. Monthus, Phys. Rev. Lett. 80, 3539 (1998)]. The typical relaxation time scales like ∼τexp(T g/T). The glass cross-over temperature Tg related to correlations among solitons is equal to the average energy barrier and scales like T g∼ 2xξΔ. x is the concentration of defects, ξ the correlation length of the CDW or SDW and Δ the charge or spin gap. Received 12 December 2001  相似文献   

2.
The phase diagram of the organic superconductor (TMTSF)2PF6has been revisited using transport measurements with an improved control of the applied pressure. We have found a 0.8 kbar wide pressure domain below the critical point (9.43 kbar, 1.2 K) for the stabilisation of the superconducting ground state featuring a coexistence regime between spin density wave (SDW) and superconductivity (SC). The inhomogeneous character of the said pressure domain is supported by the analysis of the resistivity between T SDW and T SC and the superconducting critical current. The onset temperature T SC is practically constant ( 1.20±0.01 K) in this region where only the SC/SDW domain proportion below T SC is increasing under pressure. An homogeneous superconducting state is recovered above the critical pressure with T SC falling at increasing pressure. We propose a model comparing the free energy of a phase exhibiting a segregation between SDW and SC domains and the free energy of homogeneous phases which explains fairly well our experimental findings. Received 3 September 2001 and Received in final form 9 November 2001  相似文献   

3.
Current-voltage (J-V) and differential-conductivity-voltage ( dJ/dV-V) characteristics are analytically calculated at zero temperature for a point contact consisting of: two Peierls conductors P ( = 1, 2) separated by an insulator (I). Here P is a conductor with charge density wave (CDW). The J-V and dJ/dV-V characteristics depend on the CDW phases ( = 1, 2) in the mean field approximation. To calculate them analytically we assumed, = ≡Δ where ( = 1, 2) are the energy gaps of P ( = 1, 2). The current J has a discontinuous jump at eV = 2Δ for ϕ 1 = ϕ 2≠ 0. The differential conductivity dJ/dV has a singularity at eV = 2Δ for ϕ 1 = ϕ 2≠ 0. The relation J(V 1 2) = - J(- V 1 + π,ϕ 2 + π) is obtained. Received 4 July 2001 and Received in final form 13 September 2001  相似文献   

4.
In this paper we study Peierls instabilities for a half-filled two-dimensional tight-binding model with nearest-neighbour hopping t and next nearest-neighbour hopping t' at zero and finite temperatures. Two dimerization patterns corresponding to the same phonon vector (π,π) are considered to be realizations of Peierls states. The effect of imperfect nesting introduced by t' on the Peierls instability, the properties of the dimerized ground state, as well as the competition between two dimerized states for each t' and temperature T, are investigated. It is found: (i). The Peierls instability will be frustrated by t' for each of the dimerized states. The Peierls transition itself, as well as its suppression by t', may be of second- or first-order. (ii). When the two dimerized states are considered jointly, one of them will dominate the other depending on parameters t' and T. Two successive Peierls transitions, that is, the system passing from the uniform state to one dimerized state and then to the other may take place with decrease of temperature. Implications of our results to real materials are discussed. Received 31 July 2001  相似文献   

5.
We present a new effect that is possible for strongly correlated electrons in commensurate mesoscopic rings: the collective tunneling of electrons between classically equivalent configurations, corresponding to ordered states possessing charge and spin density waves (CDW, SDW) and charge separation (CS). Within an extended Hubbard model at half filling studied by exact numerical diagonalization, we demonstrate that the ground state phase diagram comprises, besides conventional critical lines separating states characterized by different orderings (e.g. CDW, SDW, CS), critical lines separating phases with the same ordering (e.g. CDW-CDW) but with different symmetries. While the former also exist in infinite systems, the latter are specific for mesoscopic systems and directly related to a collective tunnel effect. We emphasize that, in order to construct correctly a phase diagram for mesoscopic rings, the examination of CDW, SDW and CS correlation functions alone is not sufficient, and one should also consider the symmetry of the wave function that cannot be broken. We present examples demonstrating that the jumps in relevant physical properties at the conventional and new critical lines are of comparable magnitude. These transitions could be studied experimentally e.g. by optical absorption in mesoscopic systems. Possible candidates are cyclic molecules and ring-like nanostructures of quantum dots. Received 27 November 2000  相似文献   

6.
The reflectivity spectrum of a polyaniline CSA-doped in presence of m-cresol has been measured over the wide wavenumber range 25-15,000 cm-1 (0.003-1.9 eV) for three different doping levels. Since spectra cannot be fitted correctly with the conventional Drude model, several extensions are tested. A model derived from the factorized form of the dielectric response and including the effect of Anderson localization in disordered metals, is proposed and found to yield good fit to data with a satisfactory physical meaning. Data are reduced to a small number of parameters potentially useful for further comparison with other conducting polymers or even other non-Drude conducting media like oxides. Received 6 February 2002 / Received in final form 12 August 2002 Published online 27 January 2003 RID="a" ID="a"e-mail: gervais@delphi.phys.univ-tours.fr RID="b" ID="b"UMR 6157 CNRS/CEA  相似文献   

7.
Based on a half-filled two-dimensional tight-binding model with nearest-neighbour and next nearest-neighbour hopping the effect of imperfect Fermi surface nesting on the Peierls instability is studied at zero temperature. Two dimerization patterns corresponding to a phonon vector (π,π) are considered. It is found that the Peierls instability will be suppressed with an increase of next nearest-neighbour hopping which characterizes the nesting deviation. First and second order transitions to a homogeneous state are possible. The competition between the two dimerized states is discussed. Received 22 December 2000  相似文献   

8.
We report on X-ray magnetic diffraction studies of the spin density wave antiferromagnetism formed in the conduction electron band of chromium. Non-resonant X-ray magnetic scattering was used to directly determine that chromium has zero orbital magnetisation. Furthermore, the azimuthal dependence of this scattering provides unique evidence that chromium forms a linearly polarised wave. In the vicinity of the K absorption edge, resonant X-ray magnetic scattering was observed. A consistent model of the magnetic scattering has been derived from the resonant and non-resonant magnetic amplitudes. The enhancement of the magnetic intensity arises primarily from dipole transitions from the core 1s level to 4p states. Quadrupole transitions to the magnetic 3d states are essentially non-existent due to their sensitivity to (and the absence of) orbital moment. This effect is predicted from atomic considerations of the 3d5 ( = 0) transition metal ions. Received 22 September 2000  相似文献   

9.
Specific heats of the charge-density-wave compounds o-TaS3 and (TaSe4)2I have been measured over the wide temperature interval 10 K-300 K. Both systems exhibit strong non-Debye behavior. Very weak and broad anomalies are observed at the Peierls transition temperatures. For o-TaS3, the change in the curvature of the specific heat occurs at temperature of 40 K where glass transition has been deduced from dielectric measurements, and an extended scaling analysis suggests that the glass transition is associated with a dynamical cross over in length scales. We briefly discuss the characteristics and physical origins of the anomalies at both the Peierls and glass transitions. Received 5 April 2002 / Received in final form 28 June 2002 Published online 17 September 2002  相似文献   

10.
11.
Orthorhombic EuPdSb is known to undergo two magnetic transitions, at 12 K and at T N≃ 18 K, and in phase III (T < 12 K), single crystal magnetisation data have shown that the spin structure is collinear antiferromagnetic, with magnetic moments along the crystal a axis. From a 151Eu M?ssbauer absorption study, we show that, at any temperature within phase III, all the moments have equal sizes, and that in phase II (12 K< T <18 K) the magnetic structure is modulated and incommensurate with the lattice spacings. The modulation is close to a pure sine-wave just below T N = 18 K, and it squares up as temperature is lowered. We measured the thermal variations of the first and third harmonics of the moment modulation, and we could determine the first and third harmonics of the exchange coupling. We furthermore show that the antiferromagnetic-incommensurate transition at 12 K is strongly first order, with a hysteresis of 0.05 K, and that the incommensurate-paramagnetic transition at 18 K is weakly first order. Finally, we present an explanation of the spin-flop transition observed in the single crystal magnetisation data in phase III when || in terms of an anisotropic molecular field tensor. Received 17 January 2001 and Received in final form 20 March 2001  相似文献   

12.
The optical properties of the quarter-filled single-band CDW systems have been reexamined in the model with the electron-phonon coupling related to the variations of electron site energies. It appears that the indirect, electron-mediated coupling between phase phonons and external electromagnetic fields vanishes for symmetry reasons, at variance with the infrared selection rules used in the generally accepted microscopic theory. It is shown that the phase phonon modes and the electric fields couple directly, with the coupling constant proportional to the magnitude of the charge-density wave. The single-particle contributions to the optical conductivity tensor are determined for the ordered CDW state and the related weakly doped metallic state by means of the Bethe-Salpeter equations for elementary electron-hole excitations. It turns out that this gauge-invariant approach establishes a clear connection between the effective numbers of residual, thermally activated and bound charge carriers. Finally, the relation between these numbers and the activation energy of dc conductivity and the optical CDW gap scale is explained in the way consistent with the conductivity sum rules.  相似文献   

13.
A new variety of P 4 W 10 O 38 , m = 5 member of the monophosphate tungsten-bronze family with pentagonal tunnels (MPTB p), , has been isolated and studied by X-ray diffraction measurements. The structure has been solved by direct methods from single crystal X-ray data. The monoclinic unit cell corresponds to a regular stacking of WO 3 -type slabs which are all five-WO 6 -octahedra thick and connected through PO 4 tetrahedra. This structure is comparable to that previously described for the MPTB p'series with m = 4 (P 4 W 8 O 32 ) and m = 6 (P 4 W 12 O 44 ). An X-ray diffuse scattering investigation has revealed that this member is subjected to charge density wave instabilities (CDW) located on chains running along the directions. Two CDW transitions have been observed at and , bearing some resemblance with those exhibited by the m = 4 member. The corresponding modulation wave vectors can be accounted for by a hidden nesting mechanism which connects the crossing points of differently oriented quasi-planar Fermi surfaces, as found for the low m (4 and 6) members of the MPTB's. Received 12 March 1999 and received in final form 20 May 1999  相似文献   

14.
The validity of the optical sum rules has been addressed eversince and was always matter of debate. Particularly controversial is the proof that the partial sum rules can be extended to both optical conductivity and energy loss function. We show in this paper that for both transverse (optical conductivity) and longitudinal (energy loss function) absorption processes the corresponding sum rule can be theoretically established and through appropriate conditions for the integration limits exactly verified. We also focus our attention on the one-dimensional case within the microscopic Hubbard model. An application of these concepts to the quasi one-dimensional systems, for which we have chosen the organic (TMTSF)2PF6 material, will also be presented. Received: 19 December 1997 / Received in final form: 9 March 1998 / Accepted: 23 March 1998  相似文献   

15.
The monophosphate tungsten bronzes (PO 2 ) 4 (WO 3 ) 2m are quasi-two-dimensional conductors which show charge density wave type electronic instabilities. We report electrical resistivity and magnetoresistance measurements down to 0.30 K and in magnetic fields up to 16 T for the m = 7, 8 and 9 members of this family. We show that these compounds exhibit at low temperature an upturn of resistivity and field dependences of the magnetoresistance characteristic of localization effects. We discuss the dimensionality of the regime of localization as m is varied. We show that for m =7, the regime is quasi-two-dimensional and three-dimensional for m = 8, 9. Received 16 September 1999  相似文献   

16.
We present a comprehensive analysis of the optical constants of the two-dimensional dichalcogenide materials 2 H - TaSe 2 and 2 H - NbSe 2 , in an attempt to address the physics of two-dimensional correlated systems. The title compounds were studied over several decades in frequency, from the far-infrared to the ultraviolet. Measurements with linearly polarized light have allowed us to obtain both the in-plane and out-of-plane components of the conductivity tensor. Although the electromagnetic response of dichalcogenides is strongly anisotropic, both the in-plane and out-of-plane components of the conductivity tensor share many common features, including the presence of a well-defined metallic component, as well as a “mid-infrared band”. We discuss the implications of these results in the context of the spectroscopic results of other classes of low-dimensional conductors such as the high-temperature superconducting cuprates. In particular, the analysis of the redistribution of the spectral weight as a function of temperature, as well as the behavior of the quasiparticles relaxation rate, points to significant distinctions between the charge dynamics of dichalcogenides and other classes of low dimensional conductors. Received 28 October 2002 / Received in final form 10 March 2003 Published online 23 May 2003 RID="a" ID="a"e-mail: degiorgi@solid.phys.ethz.ch  相似文献   

17.
A ferrimagnetic polymer with m-phenylene skeleton as coupling unit is studied with the Hubbard model in the self-consistent mean-field theory. The ferrimagnetic ground state with a total spin S = 1 per unit cell is obtained and originates from the antiferromagnetic correlations between the nearest neighbors. If the on-site electron-electron repulsions at the radical sites and at the phenylene ring sites are different, the gap in energy band structure may disappear and the ferrimagnetic ground state becomes unstable. The charge density and spin density can transfer between the radical sites and the phenylene ring sites due to the competition between the hopping integral and the on-site repulsion at different sites. Received 15 July 2002 Published online 31 December 2002  相似文献   

18.
This paper describes a theoretical study, at a microscopic scale, of the properties of a symmetric magnetic nanocontact. In particular, we study a symmetric nanocontact separating two waveguide groups of semi-infinite spin ordered ferromagnetic monatomic chains. The individual and total conductance of bulk magnons of the chains, scattering coherently at the nanocontact, and the localised density of spin states in the nanocontact domain, are calculated and analysed. The inter-atomic magnetic exchange is varied on the nanocontact to investigate the consequences of magnetic softening and hardening for the calculated properties. Transmission and reflection scattering cross sections are calculated from elements of a Landauer type scattering matrix. The results highlight the localized spin states on the nanocontact domain and their interactions with incident magnons. The results demonstrate also the magnetic and symmetry properties of the nanocontact domain.  相似文献   

19.
20.
We have investigated the effect of the magnetic field (B) on the very low-temperature equilibrium heat capacity ceq of the quasi-1 D organic compound (TMTTF)2Br, characterized by a commensurate Spin Density Wave (SDW) ground state. Below 1 K, ceq is dominated by a Schottky-like AST-2 contribution, very sensitive to the experimental time scale, a property that we have previously measured in numerous DW compounds. Under applied field (in the range 0.2–7 T), the equilibrium dynamics, and hence ceq extracted from the time constant, increases enormously. For B ≥ 2–3 T, ceq varies like B2, in agreement with a magnetic Zeeman coupling. Another specific property, common to other Charge/Spin density wave (DW) compounds, is the occurrence of metastable branches in ceq, induced at very low temperature by the field exceeding a critical value. These effects are discussed within a generalization to SDWs in a magnetic field of the available Larkin-Ovchinnikov local model of strong pinning. A limitation of the model when compared to experiments is pointed out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号