首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
用于直线感应加速器的3.5 MeV注入器脉冲功率系统采用了感应叠加原理。整个系统包含了脉冲形成系统、触发系统以及感应腔负载。脉冲形成系统主要由Marx发生器和Blumlein脉冲形成线组成,产生12个脉宽约90 ns,幅度约200 kV的高压脉冲,通过12个感应腔和变阻抗阴阳极杆,在阴阳极间隙处产生3.5 MV的二极管电压,由天鹅绒阴极发射强流电子束。触发系统主要由两级触发开关构成,严格控制12个高压脉冲的输出时间,时间分散性统计值小于1 ns(动作时间抖动)。采用该脉冲功率系统注入器能产生能量约3.5 MeV,电流2~3 kA的强流电子束。  相似文献   

2.
用于直线感应加速器的3.5 MeV注入器脉冲功率系统采用了感应叠加原理。整个系统包含了脉冲形成系统、触发系统以及感应腔负载。脉冲形成系统主要由Marx发生器和Blumlein脉冲形成线组成,产生12个脉宽约90 ns,幅度约200 kV的高压脉冲,通过12个感应腔和变阻抗阴阳极杆,在阴阳极间隙处产生3.5 MV的二极管电压,由天鹅绒阴极发射强流电子束。触发系统主要由两级触发开关构成,严格控制12个高压脉冲的输出时间,时间分散性统计值小于1 ns(动作时间抖动)。采用该脉冲功率系统注入器能产生能量约3.5 MeV,电流2~3 kA的强流电子束。  相似文献   

3.
 介绍了为抑制“神龙一号”加速器束流束心螺旋运动而开展的强流电子束束心轨迹的调谐技术研究和实验结果。通过束质心轨迹校正调谐,使“神龙一号”输出束流脉冲50 ns平顶部分螺旋模的振幅由大于4 mm减小到小于1 mm。同时介绍了调谐原理和方法,相关的数值模拟结果与实验结果的比较以及正在进行中的计算机智能调谐研究。  相似文献   

4.
为了准确了解电子束随时间变化的性能, 在神龙一号直线感应加速器上进行电子束束参数测量时要求测量系统精确地同步于电子束的产生和输运. 其功率系统开关放电波形后沿幅度高达250kV, 下降时间约20ns, 并且从该下降沿到电子束打靶的时间有145ns, 抖动1—2ns, 非常稳定; 如果以陡峭的后沿作为测量时间基准, 则可以获得与其抖动相同量级的同步精度. 因此通过对其波形的下降沿进行微分来获取测量系统的触发信号, 选择合适的微分参数可以得到对应于下降沿 约ns级精度的测量时间基准, 通过采用光纤驱动电路完全消除了高压开关对低压测量系统的干扰, 保证测量系统正常工作. 该方法消除了传统触发方式因延时长、精度低、抖动大等对确定测量时间基准的不利影响, 满足了使用高速测量设备准确获取电子束不同时刻的束参数波形的精确触发要求.  相似文献   

5.
高能强流电子束的束参数测量是加速器研制过程中重要的一项测量工作,由于光学渡越辐射具有时间响应快、分辨率高等特点而被用于测量电子束的具有时间分辨能力的束剖面、发散角、能量等多个参数;通过电子束束参数的时间分辨测量则能够了解电子束产生、输运中的问题,非常有利于加速器的研究与调试。一种具有时间分辨能力的、利用光学渡越辐射进行高能强流电子束束斑测量的系统在中国工程物理研究院被建立起来,并在12 MeV LIA的电子束束斑的测量中用于电子束传输研究,该系统拍摄图像的间隔时间最小为10 ns,最小的曝光时间为3 ns,具有一次可以拍摄8幅图像的能力,并获得了12 MeV LIA约100 ns内相应的时间分辨的束斑变化情况,观察到了一些过去未观察到的现象,为加速器的研究提供了又一个新测试方法。  相似文献   

6.
具有时间分辨能力的强流电子束束剖面测量系统   总被引:4,自引:2,他引:4       下载免费PDF全文
 高能强流电子束的束参数测量是加速器研制过程中重要的一项测量工作,由于光学渡越辐射具有时间响应快、分辨率高等特点而被用于测量电子束的具有时间分辨能力的束剖面、发散角、能量等多个参数;通过电子束束参数的时间分辨测量则能够了解电子束产生、输运中的问题,非常有利于加速器的研究与调试。一种具有时间分辨能力的、利用光学渡越辐射进行高能强流电子束束斑测量的系统在中国工程物理研究院被建立起来,并在12 MeV LIA的电子束束斑的测量中用于电子束传输研究,该系统拍摄图像的间隔时间最小为10 ns,最小的曝光时间为3 ns,具有一次可以拍摄8幅图像的能力,并获得了12 MeV LIA约100 ns内相应的时间分辨的束斑变化情况,观察到了一些过去未观察到的现象,为加速器的研究提供了又一个新测试方法。  相似文献   

7.
束流剖面信息的获得对于加速器的研究有着重要的意义。对强流短脉冲电子加速器束剖面测量技术作了评述。目前,发展时间分辨的快响应的光学测量技术及实时在线测量为主要发展趋势。  相似文献   

8.
强流短脉冲电子束束剖面测量技术   总被引:2,自引:5,他引:2       下载免费PDF全文
 束流剖面信息的获得对于加速器的研究有着重要的意义。对强流短脉冲电子加速器束剖面测量技术作了评述。目前,发展时间分辨的快响应的光学测量技术及实时在线测量为主要发展趋势。  相似文献   

9.
 利用切伦柯夫辐射的瞬时发光机理,把相对论电子束打在熔石英靶片上转化为可见光,再用皮秒扫描相机进行测量,就可得到射频直线加速器皮秒电子束微脉冲的峰值电流及微脉冲束团。采用该方法,对L波段射频直线加速器的电子束微脉冲宽度和束团结构进行了诊断。由此构建了一套加速器电子束微脉冲的在线测量系统,该系统对调整加速器工作状态、提高束流品质使之适应自由电子激光要求起到了重要作用。  相似文献   

10.
文章全面介绍了在神龙一号直线感应加速器的研制过程中, 发展的一系列束参数测量手段. 光测方面, 介绍了利用光学渡越辐射和切伦柯夫辐射测量束剖面、发射度、能散度的工作; 电测方面, 介绍了利用电阻环、磁探针、纽扣电极方法测量束位置和强度, 以及利用返磁回路方法测量束流均方根半径的工作. 这些工作极大地提高了束流测量的水平.  相似文献   

11.
李剑  朱隽  尚长水  汪伟  熊学仕  龙继东 《光子学报》2008,37(5):1010-1014
用高速显微摄影技术对强流脉冲电子束轰击钽金属靶的过程进行了研究,获得了“神龙一号”加速器上靶材回喷过程的实验图像.实验表明,钽金属靶在强流脉冲电子束的作用下,有强烈的热释光现象产生,靶材的回喷粒子的轴向速度可达4.7 mm/μs.  相似文献   

12.
强流高功率脉冲电子束聚焦成mm量级的束斑后,打击到轫致辐射靶的过程中会产生回流离子,它会导致电子束被提前聚焦,在预定的靶面形成散焦。描述了法拉第筒对12MeV 直线感应加速器的轫致辐射靶面可能产生的离子及其参数进行的实验测量,并对实验结果进行了分析讨论。结果表明在靶前60°~70°方向未发现回流离子。  相似文献   

13.
In this paper, the effects of physical parameters on the gain and efficiency of Cherenkov type FEL are studied through simulative compute. The results show that the permittivity ε and periodic length λ_(?) of wiggler magnetic filed are two important parameters which influence the properties of laser. The magnitude ε has effect on the properties of gain, and the choice of wigger λ_(?) can increase gain and efficiency of the laser. The calculation results show that the gain and efficiency of Cherenkov type FEL are considerably higher than those of Compton-Raman type FEL under some conditions with proper parameters.  相似文献   

14.
A series of laser-produced breakdown interferograms has been obtained using five diffraction interferometers with pulsed ruby lasers serving as light sources. The interferograms and the results of their processing are presented in this article.  相似文献   

15.
对触发开关和主开关产生电磁辐射的机理进行了详细的分析,将气体开关导电通道等效为电偶极子,理论分析了其辐射电磁波的空间分布,以同轴电缆为实验对象,研究了电磁辐射的干扰。实验测量了触发开关和主开关的电磁辐射信号,结果表明, 运用偶极辐射等效可以很好地描述二者的辐射特性。在强流电子束加速器产生电磁辐射的时刻,同轴电缆中感应出了一定强度的电流,幅值达3 V,已经足以对其他信号的准确测量产生影响。  相似文献   

16.
强流短脉冲电子束束剖面的时间分辨测量   总被引:2,自引:8,他引:2       下载免费PDF全文
 介绍了一套基于切伦科夫辐射的、用于强流短脉冲电子束束剖面测量的装置。装置利用扫描相机记录背面打毛的石英玻璃薄片中产生的切伦科夫光信号。使用该装置,在中国工程物理研究院流体物理研究所的2MeV注入器上进行了切伦科夫光的验证实验和时间分辨的束剖面测量实验。分析表明,测量系统的时间分辨率和空间分辨率分别为1.75ns和0.74mm。  相似文献   

17.
All types of treatment planning systems need some input measured beam data. Such data differ in type and number depending on the model of electron beam algorithm used inside. In addition to the number of percentage depth dose (%DD) and cross beam profiles, the effective source surface distance parameter SSDeff was also recommended to be measured and transferred to the planning system. Output measurements were carried out using 0.6cc cylindrical Farmer type ion chamber placed in water phantom at depth of dose maximum, in Radiat. Phys. Dep., Malmö Hospital, Lund University, Sweden. Results were collected for all available energies combined with both applicators and inserts on a Varian Clinac 2100C. SSDeff was determined from the ionization measurements using equation given by Khan et al. (1991). Comparing the results with those obtained by Roback et al. (1995) on a similar Varian Clinac 2100C, it was found that the deviation of SSDeff was 7.5% for combination of energies, field sizes, and inserts except at 6 MeV. The variations of SSDeff than the nominal SSD reflect the importance of corrections against air gap present in irregular clinical situations. SSDeff should be measured during commissioning of both accelerator or/and local treatment-planning computer. Inserts used in measurements should be from the same material and thickness as that are used in clinical work.  相似文献   

18.
切伦科夫辐射是一种方向性极好的辐射,其辐射能量发射方向严格地与带电粒子的运动方向相关,辐射光携带了带电粒子的方向信息,利用这种特性可以进行电子束发散角及其分布的测量。在基于切伦科夫辐射原理的基础上,考虑电子与物质作用时的多重库仑散射、电离等效应,进行了电子束发散角测量的蒙特卡罗数值模拟程序的建模工作,并完成了理想电子束及具有发散角分布的电子束的测量技术模拟工作。大量模拟结果显示,这种测量方法是可行的,具有对电子束发散角分布进行直接测量的能力,并且其测量系统结构简单。  相似文献   

19.
 叙述了用高速摄影技术研究强流脉冲电子束与钽金属靶相互作用后靶材的回喷现象,得出了靶材回喷的速度。并且采用EGS4程序和Euler流体力学方程组分别模拟了电子束在靶内的能量沉积和束靶相互作用的动力学过程。实验表明,钽金属靶在强流脉冲电子束轰击下,回喷靶材的轴向速度大于2.9 mm/μs,而模拟结果表明理想情况下回喷靶材自由面的轴向速度可达9.7 mm/μs。实验和理论计算为阻挡回喷靶材的快门设计提供了必要的参数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号