首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
An edge of ak-connected graph is said to bek-contractible if the contraction of the edge results in ak-connected graph. We prove that every triangle-freek-connected graphG has an induced cycleC such that all edges ofC arek-contractible and such thatG–V(C) is (k–3)-connected (k4). This result unifies two theorems by Thomassen [5] and Egawa et. al. [3].Dedicated to Professor Toshiro Tsuzuku on his sixtieth birthday  相似文献   

2.
Conditions on a graphG are presented which are sufficient to guarantee thatG–Z contains a 1-factor, whereZ is a set of edges ofG of restricted cardinality. These conditions provide generalizations of several known results and, further, establish the result that ifG is anr-regular, (r–2)-edge-connected graph (r2) of even order andz is an integer with 0zr–1 such thatG contains fewer thanr–z edge cut sets of cardinalityr–2, thenG–Z has a 1-factor for each setZ ofz edges ofG.  相似文献   

3.
Acycle double cover of a graph,G, is a collection of cycles,C, such that every edge ofG lies in precisely two cycles ofC. TheSmall Cycle Double Cover Conjecture, proposed by J. A. Bondy, asserts that every simple bridgeless graph onn vertices has a cycle double cover with at mostn–1 cycles, and is a strengthening of the well-knownCycle Double Cover Conjecture. In this paper, we prove Bondy's conjecture for 4-connected planar graphs.  相似文献   

4.
We give various characterizations ofk-vertex connected graphs by geometric, algebraic, and physical properties. As an example, a graphG isk-connected if and only if, specifying anyk vertices ofG, the vertices ofG can be represented by points of k–1 so that nok are on a hyper-plane and each vertex is in the convex hull of its neighbors, except for thek specified vertices. The proof of this theorem appeals to physics. The embedding is found by letting the edges of the graph behave like ideal springs and letting its vertices settle in equilibrium.As an algorithmic application of our results we give probabilistic (Monte-Carlo and Las Vegas) algorithms for computing the connectivity of a graph. Our algorithms are faster than the best known (deterministic) connectivity algorithms for allkn, and for very dense graphs the Monte Carlo algorithm is faster by a linear factor.  相似文献   

5.
It is proved that for every positive integer k, every n-connected graph G of sufficiently large order contains a set W of k vertices such that GW is (n-2)-connected. It is shown that this does not remain true if we add the condition that G(W) is connected.  相似文献   

6.
Colorings and orientations of graphs   总被引:10,自引:0,他引:10  
N. Alon  M. Tarsi 《Combinatorica》1992,12(2):125-134
Bounds for the chromatic number and for some related parameters of a graph are obtained by applying algebraic techniques. In particular, the following result is proved: IfG is a directed graph with maximum outdegreed, and if the number of Eulerian subgraphs ofG with an even number of edges differs from the number of Eulerian subgraphs with an odd number of edges then for any assignment of a setS(v) ofd+1 colors for each vertexv ofG there is a legal vertex-coloring ofG assigning to each vertexv a color fromS(v).Research supported in part by a United States-Israel BSF Grant and by a Bergmann Memorial Grant.  相似文献   

7.
We give the solution to the following question of C. D. Godsil[2]: Among the bipartite graphsG with a unique perfect matching and such that a bipartite graph obtains when the edges of the matching are contracted, characterize those having the property thatG +G, whereG + is the bipartite multigraph whose adjacency matrix,B +, is diagonally similar to the inverse of the adjacency matrix ofG put in lower-triangular form. The characterization is thatG must be obtainable from a bipartite graph by adding, to each vertex, a neighbor of degree one. Our approach relies on the association of a directed graph to each pair (G, M) of a bipartite graphG and a perfect matchingM ofG.  相似文献   

8.
Ervin Győri 《Combinatorica》1991,11(3):231-243
In this paper, we prove that any graph ofn vertices andt r–1(n)+m edges, wheret r–1(n) is the Turán number, contains (1–o(1)m edge disjointK r'sifm=o(n 2). Furthermore, we determine the maximumm such that every graph ofn vertices andt r–1(n)+m edges containsm edge disjointK r's ifn is sufficiently large.Research partially supported by Hungarian National Foundation for Scientific Research Grant no. 1812.  相似文献   

9.
Contractible edges in triangle-free graphs   总被引:2,自引:0,他引:2  
An edge of a graph is calledk-contractible if the contraction of the edge results in ak-connected graph. Thomassen [5] proved that everyk-connected graph of girth at least four has ak-contractible edge. In this paper, we study the distribution ofk-contractible edges in triangle-free graphs and show the following: Whenk≧2, everyk-connected graph of girth at least four and ordern≧3k, hasn+(3/2)k 2-3k or morek-contractible edges.  相似文献   

10.
Alon  Noga 《Combinatorica》1990,10(4):319-324
Solving an old conjecture of Szele we show that the maximum number of directed Hamiltonian paths in a tournament onn vertices is at mostc · n 3/2 · n!/2 n–1, wherec is a positive constant independent ofn.Research supported in part by a U.S.A.-Israel BSF grant and by a Bergmann Memorial Grant.  相似文献   

11.
Thescore vector of a labeled digraph is the vector of out-degrees of its vertices. LetG be a finite labeled undirected graph without loops, and let σ(G) be the set of distinct score vectors arising from all possible orientations ofG. Let ϕ(G) be the set of subgraphs ofG which are forests of labeled trees. We display a bijection between σ(G) and ϕ(G). Supported in part by ONR Contract N00014-76-C-0366.  相似文献   

12.
A graphG is said to bek-critical if it has chromatic numberk, but every proper subgraph ofG has a (k–1)-coloring. Gallai asked whether every largek-critical graph contains many (k–1)-critical subgraphs. We provide some information concerning this question and some related questions.  相似文献   

13.
Non-Separating Paths in 4-Connected Graphs   总被引:2,自引:0,他引:2  
In 1975, Lovász conjectured that for any positive integer k, there exists a minimum positive integer f(k) such that, for any two vertices x, y in any f(k)-connected graph G, there is a path P from x to y in G such that GV(P) is k-connected. A result of Tutte implies f(1) = 3. Recently, f(2) = 5 was shown by Chen et al. and, independently, by Kriesell. In this paper, we show that f(2) = 4 except for double wheels.Received October 17, 2003  相似文献   

14.
For a finite or infinite graphG, theGallai graph (G) ofG is defined as the graph whose vertex set is the edge setE(G) ofG; two distinct edges ofG are adjacent in (G) if they are incident but do not span a triangle inG. For any positive integert, thetth iterated Gallai graph t (G) ofG is defined by ( t–1(G)), where 0(G):=G. A graph is said to beGallai-mortal if some of its iterated Gallai graphs finally equals the empty graph. In this paper we characterize Gallai-mortal graphs in several ways.  相似文献   

15.
Path-closed sets     
Given a digraphG = (V, E), call a node setTV path-closed ifv, v′ εT andw εV is on a path fromv tov′ impliesw εT. IfG is the comparability graph of a posetP, the path-closed sets ofG are the convex sets ofP. We characterize the convex hull of (the incidence vectors of) all path-closed sets ofG and its antiblocking polyhedron inR v , using lattice polyhedra, and give a minmax theorem on partitioning a given subset ofV into path-closed sets. We then derive good algorithms for the linear programs associated to the convex hull, solving the problem of finding a path-closed set of maximum weight sum, and prove another min-max result closely resembling Dilworth’s theorem.  相似文献   

16.
Cycles in weighted graphs   总被引:2,自引:0,他引:2  
A weighted graph is one in which each edgee is assigned a nonnegative numberw(e), called the weight ofe. The weightw(G) of a weighted graphG is the sum of the weights of its edges. In this paper, we prove, as conjectured in [2], that every 2-edge-connected weighted graph onn vertices contains a cycle of weight at least 2w(G)/(n–1). Furthermore, we completely characterize the 2-edge-connected weighted graphs onn vertices that contain no cycle of weight more than 2w(G)/(n–1). This generalizes, to weighted graphs, a classical result of Erds and Gallai [4].  相似文献   

17.
LetG=(V, E) be a directed graph andn denote |V|. We show thatG isk-vertex connected iff for every subsetX ofV with |X| =k, there is an embedding ofG in the (k–1)-dimensional spaceR k–1,fVR k–1, such that no hyperplane containsk points of {f(v)|vV}, and for eachvV–X, f(v) is in the convex hull of {f(w)| (v, w)E}. This result generalizes to directed graphs the notion of convex embeddings of undirected graphs introduced by Linial, Lovász and Wigderson in Rubber bands, convex embeddings and graph connectivity,Combinatorica 8 (1988), 91–102.Using this characterization, a directed graph can be tested fork-vertex connectivity by a Monte Carlo algorithm in timeO((M(n)+nM(k)) · (logn)) with error probability<1/n, and by a Las Vegas algorithm in expected timeO((M(n)+nM(k)) ·k), whereM(n) denotes the number of arithmetic steps for multiplying twon×n matrices (M(n)=O(n 2.376)). Our Monte Carlo algorithm improves on the best previous deterministic and randomized time complexities fork>n 0.19; e.g., for , the factor of improvement is >n 0.62. Both algorithms have processor efficient parallel versions that run inO((logn)2) time on the EREW PRAM model of computation, using a number of processors equal to logn times the respective sequential time complexities. Our Monte Carlo parallel algorithm improves on the number of processors used by the best previous (Monte Carlo) parallel algorithm by a factor of at leastn 2/(logn)3 while having the same running time.Generalizing the notion ofs-t numberings, we give a combinatorial construction of a directeds-t numbering for any 2-vertex connected directed graph.  相似文献   

18.
LetG be a group generated by a subset of elementsS. The Cayley diagram ofG givenS is the labeled directed graph with vertices identified with the elements ofG and (v, u) is an edge labeledh ifh S anduh=v. The sequence of elements ofS corresponding to the edges transversed in a hamiltonian path (whose initial vertex is the identity) is called a group generating sequence (abbreviatedggs) inS.In this paper a minimal upper bound for the number ofggs's in a pair of generator elements for any two-generated group is given. For all groups of the formG=a, b:b n =1,a m =b r ,ba=ab –1 wherem is even, it is shown that the number ofggs's in {a, b} is 1+m(n–1)/2. An algorithm is developed that yields the number ofggs's for two-generated groupsG=a, b for which ba –1G. Explicit forms for the countedggs's are also provided.  相似文献   

19.
Let FXB be a fibre bundle with structure group G, where B is (d−1)-connected and of finite dimension, d1. We prove that the strong L–S category of X is less than or equal to , if F has a cone decomposition of length m under a compatibility condition with the action of G on F. This gives a consistent prospect to determine the L–S category of non-simply connected Lie groups. For example, we obtain cat(PU(n))3(n−1) for all n1, which might be best possible, since we have cat(PU(pr))=3(pr−1) for any prime p and r1. Similarly, we obtain the L–S category of SO(n) for n9 and PO(8). We remark that all the above Lie groups satisfy the Ganea conjecture on L–S category.  相似文献   

20.
For any integer r > 1, an r-trestle of a graph G is a 2-connected spanning subgraph F with maximum degree Δ(F) ≤ r. A graph G is called K 1,r -free if G has no K 1,r as an induced subgraph. Inspired by the work of Ryjáček and Tkáč, we show that every 2-connected K 1,r -free graph has an r-trestle. The paper concludes with a corollary of this result for the existence of k-walks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号