首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hyperfine structure of the D2 optical line in 22Na and 23Na has been investigated using high resolution laser spectroscopy of a well-collimated atomic beam. The hyperfine splitting constants A and B for the excited 3p 2P3/2 level for both investigated sodium isotopes have been obtained. They are as follows: A(22) = 7.31(4) MHz, B(22) = 4.71(28) MHz, A(23) = 18.572(24) MHz, B(23) = 2.723(55) MHz. With this data, using the high precision MCHF calculations for the electric field gradient at the nucleus, the electric quadrupole moment of 22Na has been deduced: Qs(22) =+0.185(11) b. The sign of Qs(22), determined for the first time, indicates a prolate nuclear deformation. A precise value of the isotope shift 22,23Na in the D2 line has also been obtained. Received: 26 February 1998 / Revised version: 25 June 1998  相似文献   

2.
6Li 32D 3/2, 5/2 states were studied using a diode laser to first excite the 2P 3/2 state and a dye laser to populate the 32D 3/2, 5/2 states. The dye laser was modulated by an electro-optic modulator and intersected an atomic beam that passed through a field free region and subsequently through a uniform electric field. A value of 1084.24±0.20 MHz was found for the 32D fine structure splitting. The scalar and tensor polarizabilities were determined to be α (3D 3/2 ) = - 3.753±0.015, α 2 (3D 3/2 ) = 2.893±0.017, α (3D 5/2 ) = - 3.772±0.008 and α 2 (3D 5/2 ) = 4.058±0.013 MHz/(kV/cm)2. Received 26 September 2002 / Received in final form 22 January 2003 Published online 11 March 2003 RID="a" ID="a"e-mail: wlaser@yorku.ca  相似文献   

3.
We have measured hyperfine structure in the 5 2P1/2 state of Rb using a frequency-stabilized diode laser, which is locked to one hyperfine transition, and an acousto-optic modulator, whose frequency is locked to the interval of interest. We check for optical-pumping errors by repeating the measurement at different values of pump power in the saturated-absorption spectrometer. We obtain precise values of the hyperfine constant: A=120.645(5) MHz for 85Rb and A=406.119(7) MHz for 87Rb. The values resolve a large discrepancy between two earlier high-accuracy measurements on this state.  相似文献   

4.
The electronic structure of the RFe 6 Ge 6 compounds ( R = Sc, Lu, Ti, Zr, Hf and Nb) of HfFe 6 Ge 6 -type structure has been studied using the muffin-tin Korringa-Kohn-Rostoker method in a non-relativistic approach. The chemical bonding is analyzed based on the l-decomposed site projected densities of states. Spin-dependent changes in the R nd- Fe 3d covalent bond are shown to be responsible for the experimentally observed rise in the Fe moment and hyperfine field upon increasing the R valency. The limited quantitative agreement between theoretical and experimental values is interpreted as being due to a non-negligible orbital moment and to a significant asphericity in the spin density at the iron site. The theoretical results also forecast a strong increase of the Ge(2e) transferred hyperfine field with the R valency. Received 20 December 2002 Published online 4 June 2003 RID="a" ID="a"e-mail: Thomas.Mazet@lcsm.uhp-nancy.fr RID="b" ID="b"Associé au CNRS (UMR 7555)  相似文献   

5.
We have developed a ring-cavity resonator that can be used to measure the absolute frequencies of optical transitions with an uncertainty below 40 kHz. The length of the resonator is calibrated against a reference laser locked to the D2 line of 87Rb, the frequency of which is known with 6 kHz accuracy. We demonstrate the power of this technique by measuring the absolute frequencies of various hyperfine transitions in the D1 line of 133Cs. Our results agree with earlier measurements using the frequency-comb technique, and have similar accuracy. Measurement of the D1-line frequency could lead to a more precise determination of the fine-structure constant. We also report a precise value of A=291.918(8) MHz for the hyperfine constant in the 6P1/2 state.  相似文献   

6.
Accurate ab initio calculations on embedded Cu4O12 square clusters, fragments of the La2CuO4 lattice, confirm a value of the nearest neighbor antiferromagnetic coupling (J = 124 meV) previously obtained from ab initio calculations on bicentric clusters and in good agreement with experiment. These calculations predict non negligible antiferromagnetic second-neighbor interaction (J' = 6.5 meV) and four-spin cyclic exchange (K = 14 meV), which may affect the thermodynamic and spectroscopic properties of these materials. The dependence of the magnetic coupling on local lattice distortions has also been investigated. Among them the best candidate to induce a spin-phonon effect seems to be the movement of the Cu atoms, changing the Cu-Cu distance, for which the variation of the nearest neighbor magnetic coupling with the Cu-O distance is Δ J d Cu - O ∼ 1700 cm-1?-1. Received 20 November 2000  相似文献   

7.
A simple model is developed to understand superconductivity in α -TTF[Pd(dmit)2]2. We include electron-intra molecular and intermolecular phonon interactions as the mechanism of superconductivity. Intramolecular vibrations included are the eight symmetric Ag modes of the Pd(dmit)2 molecule. Intermolecular vibrations included are the longitudinal acoustic and transverse acoustic (LA and TA) modes of the Pd(dmit)2 column. All the electron-phonon coupling constants are calculated from first principles. We find that largest el-intramolecular vibration coupling is to the Ag mode with the highest frequency (1449 cm-1). The el-intermolecular coupling to the LA mode is found to be larger than the total el-intramolecular couplings. We also find el-(TA)phonon coupling to be at least an order of magnitude smaller than el-(LA)phonon coupling. Estimate of superconducting transition temperature is comparable to experimental result. We also provide a detailed discussion, employing the results of recent numerical calculations on two-chain Hubbard model and the specific material parameters, on the relative importance of el-ph and Coulomb-origin mechanisms of superconductivity in α -TTF[Pd(dmit)2]2 and TTF[Ni(dmit) 2 ] 2 . Received 29 March 2001 and Received in final form 7 August 2001  相似文献   

8.
High resolution saturation spectroscopy was applied to measure the relative isotope shift of theD 1 lines in radioactive22Na against23Na in vapour cells. The result,δν=758.5(7) MHz, combined with other known values, indicates that the field shift is negligible in sodium isotopes. The hyperfine coupling constant of the2 P 1/2 level in22Na was found to be 37.0(1) MHz. A frequency offset locking technique is described which renders an accurate frequency calibration and achieves a long-term frequency stabilization.  相似文献   

9.
The 4 d 10 1 S0 ground-state transitions to the 4 d 9 5 p configuration of palladium (Pd) have been studied. For this purpose, a tunable, single-mode, deep-UV cw laser has been built to generate the sum frequency of a frequency-doubled Ti:S laser with a second Ti:S laser. The produced wavelengths range from 244 to 276 nm. From the measured spectra the frequency splitting due to hyperfine structure and isotope shift, the hyperfine structure A and B constants and the lifetimes of the states have been extracted. Received 3 October 2001  相似文献   

10.
Using 155Gd M?ssbauer spectroscopy down to 27 mK, we show that, in the geometrically frustrated pyrochlore Gd2Sn2O7, the Gd3+ hyperfine levels are populated out of equilibrium. From this, we deduce that the hyperfine field, and the correlated Gd3+ moments which produce this field, continue to fluctuate as T ↦ 0. With a model of a spin 1/2 system experiencing a magnetic field which reverses randomly in time, we obtain an analytical expression for the steady state probability distribution of the level populations. This distribution is a simple function of the ratio of the nuclear spin relaxation time to the average electronic spin-flip time. In Gd2Sn2O7, we find the two time scales are of the same order of magnitude. We discuss the mechanism giving rise to the nuclear spin relaxation and the influence of the electronic spin fluctuations on the hyperfine specific heat. The corresponding low temperature measurements in Gd2Ti2O7 are presented and discussed. Received 17 October 2001 Published online 6 June 2002  相似文献   

11.
We report greater than two orders of magnitude improvements in the absolute frequency and isotope shift measurements of the In+ 5s2 1S0 (F = 9/2)–5s5p 3P1 (F = 11/2) transition near 230.6 nm. The laser-induced fluorescence from a single In+ in a radio-frequency trap is detected. The fourth-harmonic of a semiconductor laser is used as the light source. The absolute frequency is measured with the help of a frequency comb referenced to a Cs atomic clock. The resulting transition frequencies for isotopes 115In+ and 113In+ are measured to be 1 299 648 954.54(10) MHz and 1 299 649 585.36(16) MHz, respectively. The deduced cooling transition frequency difference is 630.82(19) MHz. By taking into account of the hyperfine interaction, the isotope shift is calculated to be 695.76(1.68) MHz.  相似文献   

12.
Carbonari  A. W.  Mestnik  J.  Saxena  R. N.  Dogra  R.  Coaquira  J. A. H. 《Hyperfine Interactions》2001,136(3-8):345-349
Time Differential Perturbed γ–γ Angular Correlation (TDPAC) technique was used to measure the magnetic hyperfine field at both Ge and Ce sites in CeMn2Ge2 and CeCo2Ge2 intermetallic compounds. The 111In (111Cd) probe nuclei was used to investigate the hyperfine interaction at Ge sites, while the 140La (140Ce) nuclei was used to measure the magnetic hyperfine field at Ce site. The present measurements cover the temperature ranges from 10–460 K for CeMn2Ge2 and 9–295 K for CeCo2Ge2, respectively. The result for 111Cd probe showed two distinct electric quadrupole frequencies above magnetic transition temperatures, in both compounds and a combined interaction in the magnetic region. The temperature dependence of the magnetic hyperfine field at 111Cd at Mn site for the CeMn2Ge2 compound showed a transition from ferromagnetic to antiferromagnetic phase around 320 K and from antiferromagnetic to paramagnetic phase at 420 K. While a small magnetic field was measured on 111Cd at Co site, no magnetic field on 140Ce site was observed in CeCo2Ge2. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

13.
The magnetic properties of the cyclic compound [Fe6(bicine)6] LiClO4 . 2MeOH are reported. The cluster Fe6(bicine)6 forms an antiferromagnetically coupled ring structure of Fe III ions. The magnetic susceptibility is measured between 2 and 300 K and yields the exchange coupling of J/k B = - 27.5±0.5 K. The field dependence of the magnetic moment is studied at 3 and 6 K in magnetic fields up to 5 T. The zero-field splitting of the first excited spin states with S = 2 and 3 are determined by ESR at 94 GHz. The intra-molecular interactions of the Fe III ions are analyzed and the on-site anisotropy of the Fe III due to the ligand-configuration is determined to d /k B = - 0.633±0.008K. Received 28 October 2002 / Received in final form 22 February 2003 Published online 20 June 2003 RID="a" ID="a"e-mail: bernd@piobelix.physik.uni-karlsruhe.de  相似文献   

14.
Based on new systematic high precision measurements of hyperfine splittings in different rovibrational bands of 127I2 in the near infrared spectral range between 778 nm and 816 nm, and the data in the range from 660 nm to 514 nm available from literature, the quantum number dependence of the different hyperfine interaction parameters was reinvestigated. As detailed as possible parameters were re-fitted from the reported hyperfine splittings in literature, considering that the interaction parameters should vary smoothly with the vibrational and rotational quantum numbers, and follow appropriate physical models. This type of consistency has not been sufficiently taken into account by other authors. To our knowledge it is now possible for the first time to separate the hfs contributions of the two electronic states B 3 and X 1 Σ + g for optical transitions in a very large wavelength range. New interpolation formulae could be derived for both states, describing the quantum number dependences of the nuclear electric quadrupole, of the nuclear spin-rotation and also of the nuclear spin-spin interactions. Using these new interpolation formulae the hyperfine splittings for the components with the quantum number condition F - J = 0 can be calculated with an uncertainty of 30 kHz for transitions in the wavelength range between 514 nm and 820 nm. Received 17 July 2001 and Received in final form 17 October 2001  相似文献   

15.
The time-differential-perturbed γ-γ angular-correlation technique (TDPAC) with ion-implanted 181Hf tracers has been applied to study the hyperfine interactions of 181Ta impurities in the cubic bixbyite structure of Er 2 O 3 and Gd 2 O 3 . The TDPAC experiments were performed in air in the temperature range 300-1073 K (in the case of Er 2 O 3 ) and 300-1173 K (in the case of Gd 2 O 3 ). Three electrical-quadrupole interactions were found in each oxide in the whole studied temperature range. Two of them were attributed to the electric-field gradients (EFG) acting on 181Ta probes substitutionally located on the two nonequivalent free-of-defects cation sites of the bixbyite structure. The EFG results are compared with predictions of the point-charge model and discussed together with previous results obtained with the probes 111Cd and 181Ta in other isomorphous sesquioxides. The temperature dependence of the hyperfine parameters for both oxides is also discussed in terms of dilatometric expansion data. Received 29 December 2000 and Received in final form 8 March 2001  相似文献   

16.
17.
Alpha-decay properties of the neutron-deficient isotope 185Pb were studied at the PSB-ISOLDE (CERN) on-line mass separator using the resonance ionisation laser ion source (RILIS). The nuclei of interest were produced in a 1.4 GeV proton-induced spallation reaction of a uranium graphite target. In contrast to previous studies, two α-decaying isomeric states were identified in 185Pb. The relative production of the isomers, monitored by their α-counting rates, could be significantly changed when a narrow-bandwidth laser at the RILIS setup was used to scan through the atomic hyperfine structure. Based on the atomic hyperfine structure measurements, along with the systematics for heavier odd-mass lead isotopes, the spin and the parity of these states were interpreted as 3/2- and 13/2+ and their nuclear magnetic moments were deduced. The α-decay energy and half-life value for the I π = 13/2+ isomer are E α = 6408(5) keV, T 1/2 = 4.3(2) s, respectively; while for the I π = 3/2- isomer ( T 1/2 = 6.3(4) s) two α-decays with E α1 = 6288(5) keV, I α1 = 56(2)% and E α2 = 6486(5) keV, I α2 = 44(2)% were observed. By observing prompt α-γ coincidences new information on the low-lying states in the daughter isotope 181Hg was obtained. Received: 7 February 2002 / Accepted: 19 February 2002  相似文献   

18.
We have studied the fluorescence of electronically excited OH*, H* and H2O+* dissociation fragments after VUV excitation ( h ν≥11.6 eV) of rare-gas clusters (Rg = Ne, Ar) doped with H2O molecules. In contrast to a free molecule, where Balmer H-series dominate the UV-visible spectra, only the OH * ( A 2 Σ + X 2 Π) emission band is observed in neon clusters. No emission of excited water ions has been observed. We find that while higher excitation energies (Ne vs. Ar) induce higher vibrational excitation of the OH* ( A ) fragment, the rotational temperature is lower. This effect is attributed to the difference in the geometric position of the H2O molecule on the surface or inside the Rg-cluster. The rotational relaxation in neon clusters is rapid while the vibrational relaxation is slow because of the coupling with the low energy matrix phonons. Received 7 March 2002 / Received in final form 27 May 2002 Published online 19 July 2002  相似文献   

19.
In this paper, through an exhaustive analysis within the Migdal-Eliashberg theory, we show the incompatibility of experimental data of Rb3C60 with the basic assumptions of the standard theory of superconductivity. For different models of the electron-phonon spectral function α 2 F (Ω) we solve numerically the Eliashberg equations to find which values of the electron-phonon coupling λ, of the logarithmic phonon frequency and of the Coulomb pseudopotential μ * reproduce the experimental data of Rb3C60. We find that the solutions are essentially independent of the particular shape of α 2 F (Ω) and that, to explain the experimental data of Rb3C60, one has to resort to extremely large couplings: λ = 3.0±0.8. This results differs from the usual partial analyses reported up to now and we claim that this value exceeds the maximum allowed λ compatible with the crystal lattice stability. Moreover, we show quantitatively that the obtained values of λ and strongly violate Migdal's theorem and consequently are incompatible with the Migdal-Eliashberg theory. One has therefore to consider the generalization of the theory of superconductivity in the nonadiabatic regime to account for the experimental properties of fullerides. Received 30 March 2001  相似文献   

20.
We present experimental results on the two-body loss rates in a magneto-optical trap of metastable helium atoms. Absolute rates are measured in a systematic way for several laser detunings ranging from -5 to -30 MHz and at different intensities, by monitoring the decay of the trap fluorescence. The dependence of the two-body loss rate coefficient β on the excited state ( 23 P 2) and metastable state ( 23 S 1) populations is also investigated. From these results we infer a rather uniform rate constant K sp = (1±0.4)×10-7 cm3/s. Received 8 September 2000 and Received in final form 19 December 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号