首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Omasu F  Nakano Y  Ichiki T 《Electrophoresis》2005,26(6):1163-1167
Cell electrophoretic mobility (EPM) can be used to characterize individual cells. The purpose of this study is to establish reproducible and reliable cell EPM values obtained using microcapillary electrophoresis (microCE) chips. We studied cell electrophoresis on microCE chips through the comprehensive measurement of EPM and zeta potential. The inner wall of microchannels in microCE chips was coated with three kinds of reagents, namely bovine serum albumin (BSA), gelatin, and 2-methacryloyloxyethylphosphorylcholine (MPC) polymer to prevent nonspecific adhesion and interaction between cells and the inner wall. Electrophoresis was conducted in phosphate-buffered saline (pH 4-9) using erythrocytes extracted from sheep whole blood. Electroosmotic flow (EOF) mobility was measured using noncharged particles, and then the true EPM was calculated by subtracting the EOF mobility from the electromigration. MPC polymer coatings in microCE chips reduced the zeta potential of the inner wall and fully prevented nonspecific adhesion. EPM data obtained using microCE chips were almost the same and reproducible over a wide range of pH irrespective of the coating reagent used. In conclusion, reliability in the measurement of cell EPM using microCE chips was realized.  相似文献   

2.
《Electrophoresis》2017,38(7):1022-1037
In this work, we explore two methods to simultaneously measure the electroosmotic mobility in microchannels and the electrophoretic mobility of micron‐sized tracer particles. The first method is based on imposing a pulsed electric field, which allows to isolate electrophoresis and electroosmosis at the startup and shutdown of the pulse, respectively. In the second method, a sinusoidal electric field is generated and the mobilities are found by minimizing the difference between the measured velocity of tracer particles and the velocity computed from an analytical expression. Both methods produced consistent results using polydimethylsiloxane microchannels and polystyrene micro‐particles, provided that the temporal resolution of the particle tracking velocimetry technique used to compute the velocity of the tracer particles is fast enough to resolve the diffusion time‐scale based on the characteristic channel length scale. Additionally, we present results with the pulse method for viscoelastic fluids, which show a more complex transient response with significant velocity overshoots and undershoots after the start and the end of the applied electric pulse, respectively.  相似文献   

3.
《Electrophoresis》2017,38(9-10):1245-1250
We have developed a novel microchannel geometry that allows us to perform simple DC electrophoresis to measure the electrophoretic mobility and zeta potential of analytes and particles. In standard capillary geometries, mobility measurements using DC fields are difficult to perform. Specifically, measurements in open capillaries require knowledge of the hard to measure and often dynamic wall surface potential. Although measurements in closed capillaries eliminate this requirement, the measurements must be performed at infinitesimally small regions of zero flow where the pressure driven‐flow completely cancels the electroosmotic flow (Komagata Planes). Furthermore, applied DC fields lead to electrode polarization, further questioning the reliability and accuracy of the measurement. In contrast, our geometry expands and moves the Komagata planes to where velocity gradients are at a minimum, and thus knowledge of the precise location of a Komagata plane is not necessary. Additionally, our microfluidic device prevents electrode polarization because of fluid recirculation around the electrodes. We fabricated our device using standard MEMS fabrication techniques and performed electrophoretic mobility measurements on 500 nm fluorescently tagged polystyrene particles at various buffer concentrations. Results are comparable to two different commercial dynamic light scattering based particle sizing instruments. We conclude with guidelines to further develop this robust electrophoretic tool that allows for facile and efficient particle characterization.  相似文献   

4.
Hiroyuki Ohshima 《Electrophoresis》2021,42(7-8):1003-1009
Approximate analytic expressions are derived for the electrophoretic mobility of spheroidal particles (prolate and oblate) carrying low zeta potential in an electrolyte solution under an applied tangential or transverse electric field. The present approximation method, which is based on the observation that the electrophoretic mobility of a particle is determined mainly by the distortion of the applied electric field by the presence of the particle. The exact expression for the equilibrium electric potential distribution around the particle, which can be expressed as an infinite sum of spheroidal wave functions, is not needed in the present approximation. The electrophoretic mobility values calculated with these approximate expressions for spheroidal particles with constant surface potential or constant surface charge density are in excellent agreement with the exact numerical results of previous reports with the relative errors less than about 4%.  相似文献   

5.
Measurements of the electrophoretic mobility (u E) of particles of colloidal α-alumina were made as a function of pH, electrolyte concentration and electrolyte type (NaCl, NaNO3 and KCl) using two similar instrumental techniques. Significant differences (50% or less) in the values of u E of particles in NaCl were obtained from the two instruments; however, the isoelectric points (IEPs) (the pH at which u E=0), estimated from the two sets of measurements, occurred at 7.5 ± 0.3 and 7.8 ± 0.05 and were not significantly different. The latter estimate corresponds with those for particles in KCl and NaNO3 of 8.05 ± 0.11 and 7.95 ± 0.18, respectively, made using the same instrument and indicate that the IEP was a weak function of electrolyte type. When cations acted as counterions (pH > IEP), the absolute magnitudes and the ranges of u E with electrolyte concentration were found to be significantly less than when anions acted as counterions (IEP > pH). Estimates of the zeta potential (ζ), made using various procedures, showed variations of up to 25% at low ratios of electrical-double-layer thickness (κ −1) to particle radius (a) (κa∼10) and were of a similar scale to differences in u E, but no significant variations (95% confidence) in ζ were obtained at high values (κa∼200). Received: 12 July 2000 Accepted: 17 October 2000  相似文献   

6.
The electrophoretic mobility of biological cells is investigated theoretically. In particular, the effects of the distribution of the charges in the surface layer and the pH of bulk liquid phase on the mobility of cells are examined. The former includes the fixed charges due to the dissociation of the functional groups and the charges due to the penetrated electrolyte ions. The present analysis extends previous results in that the fixed charges are distributed nonuniformly across the surface layer of a cell. It is found that the distribution of the fixed charges in the surface layer has a significant effect on its electrophoretic mobility. Thus, assuming that the fixed charges are homogeneously distributed in the surface layer of a cell may lead to a significant deviation.  相似文献   

7.
Summary Electrophoretic mobility measurements in the pH 2‐10 range are described for several commercial HPLC silica microparticles and a laboratory-produced product. The content of metal impurities for the silicas was also determined by AAS. An acidic/hydrothermal treatment was used to generate a more homogenous surface for some of the silicas. The zero points of charge (zpc) for both a native and a treated silica plus several commercial HPLC silicas were compared. The electrophoretic mobility method may be useful in predicting the utility of certain types of silica supports for chromatographic separations.  相似文献   

8.
We investigate electrokinetic transport of power-law fluids in a narrow cylindrical capillary in the presence of a transverse magnetic field. The governing equations including the full Poisson-Boltzmann equation and the Cauchy momentum equation with power-law constitutive behavior are solved numerically, without being restrictive to low surface potential limits. The influence of the power-law index, wall zeta potential, relative strength of electromagnetic force over viscous force (as represented by the Hartmann number), and the lateral electric field strength on the variation of the volumetric flow rate is analyzed. Our results reveal a significant augmentation in the net-throughput beyond the traditionally explored low surface-charge limits, especially for shear-thinning fluids, defying the established notions. These fundamental theoretical premises may act as essential precursors towards developing deeper insights on fluidic transport bio-nanopores under electro-magneto- hydrodynamic influences.  相似文献   

9.
The surface charge or electrical potential properties of microfiltration, ultrafiltration and nanofiltration membranes can have a very significant influence on their separation performance. Such properties are most commonly quantified in terms of zeta-potentials obtained by calculation following experimental measurement of streaming potentials. Such calculation requires numerical solution of the equations governing fluid flow and electrical-potential distribution in the pores. A method for such calculations is presented, which includes a numerical solution of the non-linear Poisson–Boltzmann equation and allows for the mobilities of anions and cations to be individually specified. By expressing the results of such calculations in terms of a factor to be applied to a classical analytical result, it is shown to be very important to use proper numerical calculations in the interpretation of electrokinetic data for membranes. Use of a classical analytical analysis to calculate ‘relative', ‘apparent', ‘equivalent' or ‘nominal' zeta-potentials is likely to lead to substantial underestimation of the true zeta-potential and possible serious error even in the interpretation of relative changes in membrane properties. The calculations needed to avoid such difficulties may be readily carried out on a PC. It is also important to account for the individual mobilities of the anions and cations in the electrolyte used for measurements.  相似文献   

10.
Pyell U 《Electrophoresis》2008,29(3):576-589
The electrophoretic mobility of silica-encapsulated semiconductor nanocrystals (quantum dots) dependent on the pH and the ionic strength of the separation electrolyte has been determined by CE. Having shown the viability of the approach, the electrophoretic mobility mu of the nanoparticles investigated is calculated for varied zeta potential zeta, particle radius r, and ionic strength I employing an approximate analytical expression presented by Ohshima (J. Colloid Interface Sci. 2001, 239, 587-590). The comparison of calculated with measured data shows that the experimental observations exactly follow what would be expected from theory. Within the parameter range investigated at fixed zeta and I there is an increase in mu with r which is a nonlinear function. This dependence of mu on size parameters can be used for the size-dependent separation of particles. Modeling of mu as function of I and zeta makes it possible to calculate the size distribution of nanoparticles from electrophoretic data (using the peak shape of the particle zone in the electropherogram) without the need for calibration provided that zeta is known with adequate accuracy. Comparison of size distributions calculated via the presented method with size histograms determined from transmission electron microscopy (TEM) micrographs reveals that there is an excellent matching of the size distribution curves obtained with the two independent methods. A comparison of calculated with measured distributions of the electrophoretic mobility showed that the observed broad bands in CE studies of colloidal nanoparticles are mainly due to electrophoretic heterogeneity resulting from the particle size distribution.  相似文献   

11.
Electroosmotic flows through hydrophobic microchannels experience velocity slip at the channel wall, which increases the volumetric flow rate at a given electric potential gradient. The conventional method of zeta potential estimation using the volumetric flow rate may yield quite inaccurate zeta potential unless the velocity slip is appropriately taken care of. In the present investigation we develop a method for simultaneous estimation of zeta potential and velocity slip coefficient in the electroosmotic flow through a hydrophobic microchannel using velocity measurements. The relevant inverse problem is solved through the minimization of a performance function utilizing a conjugate gradient method. The present method is found to estimate the zeta potential and slip coefficient accurately even with noisy velocity measurements.  相似文献   

12.
Different approaches to the determination of electrophoretic mobilities of colloids with the Coulter DELSA electrophoresis instrument are compared. The best procedure was to collect data near both walls of the cell and in the center of the sample chamber. The data are fitted to the Komagata equation for electro-osmotic flow to give the mobility and the electro-osmotic velocity near the cell wall. The micrometer reading corresponding to the cell center was considered to be an unknown parameter which was obtained by fitting the parabola. This approach compensated for errors in determining the position of the cell walls.

It was shown that information about mobility distributions is more reliable for data collected near the center of the sample chamber. Measurements were made successfully at temperatures up to 50°C. However, the cell position shifted with heating, so measurements made at the stationary level determined at room temperature were incorrect.  相似文献   


13.
A survey is given on both theoretical background and methodical details of zeta-potential measurements on fibers. Electro-osmosis and streaming potential/streaming current measurements can be used in order to obtain correct zeta-potentials. Both measuring principles yield the same values for zeta-potential if the errors due to resistance measurements are avoided. This agreement as well as the independence of zeta-potential of applied voltage (in the case of electro-osmosis) and hydrostatic pressure (in the case of streaming potential/streaming current) point out that the Stern-potential at the boundary immobile/diffuse layer can be determined. Electrophoresis and measurement of other electrokinetic phenomena give values related to but not identical with the zeta-potential. Applications of electrokinetic measurements for investigating fiber problems in production, processing and finishing are reviewed. Parameters determining the zeta-potential of fibers are discussed.Dedicated to Prof. Dr. E. R. Schwarzl with congratulations for his 60th birthday.  相似文献   

14.
The electrophoretic mobility (μ) of tunable surface charge poly(N-isopropylacrylamide) microgel particles (PNIPAM) was measured vs pH, using different anionic buffers. Two minima, just at the buffers’ pK values, were found for the μ-pH curve. The preferential penetration of the small counterions into the soft-charged shell explains the electrokinetic charge reduction. For pH values higher than the pK, the charge screening leads to electrostatic repulsions among coions. It pushes them towards the particles; thus, balancing the global ionic distribution.  相似文献   

15.
A previous theory for the electrophoresis of a cylindrical soft particle (that is, a cylindrical hard particle covered with a layer of polyelectrolytes) [7], which makes use of the condition that the electrical force acting on the polymer segments is balanced with a frictional force exerted by the liquid flow, is modified by replacing this condition with an alternative and more appropriate boundary condition that pressure is continuous at the boundary between the surface layer and the surrounding electrolyte solution. The general mobility expression thus obtained is found to reproduce all of the approximate analytic mobility expressions derived previously. Received: 20 July 2000/Accepted: 21 August 2000  相似文献   

16.
A capillary electrophoresis system that can apply arbitrary helium gas pressures at both inlet and outlet reservoirs was constructed. The system was used to investigate the effect of pressure on electrophoretic behavior of polystyrene latex particles. The electrophoretic mobility of latex particles was increased with the application of pressure (< 3.0 kgf/cm2). The shrinkage of particle diameter under pressurization was observed using a microscope, however, the magnitude of shrinkage was not enough to explain the increase in electrophoretic mobility. Therefore, the application of pressure might increase the electric charge of the latex particle. Since methanol inhibited the enhancement in the electrophoretic mobility of the latex particles, water might play an important role in increasing mobility.  相似文献   

17.
This study analyzes the varying electrophoretic mobility and zeta potential of bone marrow stromal cells (BMSCs) during their differentiation towards neurons. Electrophoresis of primary BMSCs and neuron growth factor (NGF)‐induced neuron‐like cells with the uptake of heparin‐functionalized poly(lactide‐co‐glycolide) (PLGA) nanoparticles (NPs) are also investigated. Immunofluorescent images revealed that a high concentration of NGF accelerated the differentiation of BMSCs into neurons. When the concentration of NGF increased, the absolute values of electrophoretic mobility and zeta potential of the differentiating BMSCs increased. In addition, a longer inductive period yielded higher charge of the differentiating BMSCs and a smaller uptake amount of heparin‐functionalized PLGA NPs. However, an increase in the loading efficiency of heparin on PLGA NPs enhanced the uptake and reduced the electrical characteristics of the primary and differentiating BMSCs. Hence, a general rule is drawn that an increase in the uptake of heparin‐functionalized PLGA NPs decreased the electrophoretic mobility and zeta potential of BMSCs during differentiation towards neurons.  相似文献   

18.
We measured the electrophoretic mobilities of HL-60RG cells and their apoptotic cells triggered by Actinomycin D as a function of the ionic strength of the suspending medium at pH 7.4. Both types of cells showed negative mobilities. The apoptotic HL-60RG cells exhibited larger mobility values in magnitude than intact HL-60RG cells in the whole range of the electrolyte concentration measured. The obtained data were analyzed via a mobility expression for soft particles, that is, colloidal particles with ionpenetrable surface layers. The observed mobility difference between the intact and apoptotic HL-60RG cells was found to be due mainly to the difference in friction exerted by the cell surface layers on the liquid flow around the cells between these two types of cells rather than the difference in charge density in their surface layers. A possible explanation for this mobility change by apoptosis is given.  相似文献   

19.
The electrophoretic motion of an entity comprised of a rigid, uncharged core covered by a charge-regulated membrane which simulates a biological cell, in a general a:b electrolyte solution is analyzed. The membrane carries a fixed charge which arises from the dissociation of the acidic functional group HA. We show that the higher the concentration of cations in the bulk liquid phase, the lower the absolute Donnan potential, D, and the lower the concentration of functional group, N0, the lower the D. Also, the higher the pH, the higher the absolute electrical potential, and the greater the N0, the lower the pH. The absolute mobility of a cell, μ, increases with pH, but decreases with the increase in the friction coefficient of the membrane phase, γ. For a fixed total number of HA, if γ is large, μ/μs is less than unity, μs being the mobility of the corresponding rigid particle, and it decreases with the thickness of membrane d, and the inverse is true if γ is small. For a medium γ, the variation of μ/μs as a function of d has a local maximum, and depending upon d, it can be either greater or less than unity.  相似文献   

20.
In this work, we use coarse‐grained modeling to study the free solution electrophoretic mobility of small highly charged peptides (lysine, arginine, and short oligos thereof (up to nonapeptides)) in NaCl and Na2SO4 aqueous solutions at neutral pH and room temperature. The experimental data are taken from the literature. A bead modeling methodology that treats the electrostatics at the level of the nonlinear Poisson Boltzmann equation developed previously in our laboratory is able to account for the mobility of all peptides in NaCl, but not Na2SO4. The peptide mobilities in Na2SO4 can be accounted for by including sulfate binding in the model and this is proposed as one possible explanation for the discrepancy. Oligo arginine peptides bind more sulfate than oligo lysines and sulfate binding increases with the oligo length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号