首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A series of five free-base corroles were metalated and brominated to form 10 manganese(III) corroles. Two of the free-base corroles and six manganese(III) corroles were analyzed by X-ray crystallography, including one complex that may be considered a transition-state analogue of oxygen atom transfer (OAT) from (oxo)manganese(V) to thioansisole. Oxidation by ozone allowed for isolation of the 10 corresponding (oxo)manganese(V) corroles, whose characterization by (1)H and (19)F NMR spectroscopy and electrochemistry revealed a low-spin and triply bound manganese-oxygen moiety. Mechanistic insight was obtained by investigating their reactivity regarding stoichiometric OAT to a series of p-thioanisoles, revealing a magnitude difference on the order of 5 between the β-pyrrole brominated (oxo)manganese(V) corroles relative to the nonbrominated analogues. The main conclusion is that the (oxo)manganese(V) corroles are legitimate OAT agents under conditions where proposed oxidant-coordinated reaction intermediates are irrelevant. Large negative Hammett ρ constants are obtained for the more reactive (oxo)manganese(V) corroles, consistent with expectation for such electrophilic species. The least reactive complexes display very little selectivity to the electron-richness of the sulfides, as well as a non-first-order dependence on the concentration of (oxo)manganese(V) corrole. This suggests that disproportionation of the original (oxo)manganese(V) corrole to (oxo)manganese(IV) and (oxo)manganese(VI) corroles, followed by substrate oxidation by the latter complex, gains importance when the direct OAT process becomes progressively less favorable.  相似文献   

2.
The synthesis, structural, spectroscopic characterization, and DFT/TD-DFT calculations of antimony corroles are reported herein. The studied complexes can be described as [(Corr)SbIII] and [(Corr)(oxo)SbV]2, where Corr is the trianion of corrole. All these complexes are diamagnetic in nature as is evident from sharp peaks with normal chemical shifts in the 1H NMR spectra. Single crystal XRD analysis reveals that the antimony(V) corrole complex is the bis-μ-oxo-bridged dinuclear antimony(V). Both the tetra and hexa-coordinated [(Corr)SbIII] and [(Corr)(oxo)SbV]2 antimony complexes adopt domed-structure with weak d-π electron coupling. The Sb−O bond distances in the co-facial dimer of [(Corr)(oxo)SbV]2 are 1.9802(16) Å (DFT: 2.0141 Å ) (for Sb1−O1), and 1.9639(17) Å (DFT: 1.9957 Å ) (for Sb2−O2) respectively. We observed that even though iodosobenzene is frequently used to oxidize [(Corr)SbIII] species, the oxidation of [(Corr)SbIII] is indeed very facile in nature and it even occurred in the air-equilibrated CHCl3 solution while storing for few days. Excitation of these antimony (III/V) corrole complexes in DCM/MeOH (1 : 1) at 77 K results in red emission with maxima at 640–720 nm. The singlet oxygen production of [(Corr)(oxo)SbV]2 has a quantum yield of 69 % and is two times higher than the analogous [(Corr)SbIII] derivatives.  相似文献   

3.
A series of N-base appended corroles and their manganese complexes were synthesized and their binding constants with three different nitrogenous ligands, triethylamine, N-methylimidazole and pyridine, were evaluated by spectroscopy. Kinetic studies indicated that the presence of appended N- donor ligands may cause a significant enhancement of the rate of oxygen atom transfers (OAT) from (oxo)manganese(V) corrole to alkene, and the stronger axial ligand binding has impact on the rate of the oxidation reaction. Turnover frequency (TOF) for the catalytic oxidation of alkenes by appended manganese corroles varies with the following ligand order: acetamido 〈 pyridyl 〈 imidazolyl. The influence of the external axial ligands on the catalytic epoxidation was investigated by using appended acetamido manganese corrole as catalyst, with the results revealing that N-methylimidazole gave the best enhancement on the yields of total oxidation products among the investigated nitrogenous ligands.  相似文献   

4.
5.
The electronic and structural features of (oxo)manganese(v) corroles and their catalyzed oxygen atom transfers to thioanisole in different spin states have been investigated by the B3LYP functional calculations. Calculations show that these corrole-based oxidants and their complexes with thioanisole generally have the singlet ground state, and their triplet forms are also accessible in consideration of the spin-orbit coupling interaction. Due to strong d-π conjugation interactions between Mn and the corrole ring arising from the π electron donation of the corrole moiety, the five-coordinated Mn approximately has the stable 18-electron configuration. The predicted free energy barriers for the singlet oxygen atom transfer reactions are generally larger than 22 kcal mol(-1), while the spin flip in reaction may remarkably increase the reactivity. In particular, the bromination on β-pyrrole carbon atoms of the meso-substituted (oxo)manganese(v) corrole strikingly enhances the spin-orbit coupling interaction and results in the dramatic increase of reactivity. The multiple spin changes are predicted to be involved in the low-energy reaction pathway. The present results show good agreement with the experimental observation and provide a detailed picture for the oxygen atom transfer reaction induced by the (oxo)manganese(v) corroles.  相似文献   

6.
The germanium(IV), tin(IV). and phosphorus(v) complexes of tris(pentafluorophenyl)corrole were prepared and investigated by electrochemistry for elucidation of the electrochemical HOMO-LUMO gap of the corrole and the spectroscopic characteristics of the corrole pi radical cation. This information was found to be highly valuable for assigning the oxidation states in the various iron corroles that were prepared. Two iron corroles and the rhodium(I) complex of an N-substituted corrole were fully characterized by X-ray crystallography and all the transition metal corroles were examined as cyclopropanation catalysts. All iron (except the NO-ligated) and rhodium corroles are excellent catalysts for cyclopropanation of styrene, with the latter displaying superior selectivities. An investigation of the effect of the oxidation state of the metal and its ligands leads to the conclusion that for iron corroles the catalytically active form is iron(III), while all accesible oxidation states of rhodium are active.  相似文献   

7.
Iron corroles modified with a xanthene scaffold are delivered from easily available starting materials in abbreviated reaction times. These new iron corroles have been spectroscopically examined with particular emphasis on defining the oxidation state of the metal center. Investigation of their electronic structure using (57)Fe Mo?ssbauer spectroscopy in conjunction with density functional theory (DFT) calculations reveals the non-innocence of the corrole ligand. Although these iron corroles contain a formal Fe(IV) center, the deprotonated corrole macrocycle ligand is one electron oxidized. The electronic ground state of these complexes is best described as an intermediate spin S = 3/2 Fe(III) site strongly antiferromagnetically coupled to the S = 1/2 of the monoradical dianion corrole [Fe(III)Cl-corrole(+?)]. We show here that iron corroles as well as xanthene-modified and hangman xanthene iron corroles are redox active and catalyze the disproportionation of hydrogen peroxide via the catalase reaction, and that this activity scales with the oxidation potential. The meso position of corrole macrocycle is susceptible toward nucleophilic attack during catalase turnover. The reactivity of peroxide within the hangman cleft reported here adds to the emerging theme that corroles are good at catalyzing two-electron activation of the oxygen-oxygen bond in a variety of substrates.  相似文献   

8.
9.
Co(III) corroles were investigated as efficient catalysts for the reduction of dioxygen in the presence of perchloric acid in both heterogeneous and homogeneous systems. The investigated compounds are (5,10,15-tris(pentafluorophenyl)corrole)cobalt (TPFCor)Co, (10-pentafluorophenyl-5,15-dimesitylcorrole)cobalt (F 5PhMes 2Cor)Co, and (5,10,15-trismesitylcorrole)cobalt (Mes 3Cor)Co, all of which contain bulky substituents at the three meso positions of the corrole macrocycle. Cyclic voltammetry and rotating ring-disk electrode voltammetry were used to examine the catalytic activity of the compounds when adsorbed on the surface of a graphite electrode in the presence of 1.0 M perchloric acid, and this data is compared to results for the homogeneous catalytic reduction of O 2 in benzonitrile containing 10 (-2) M HClO 4. The corroles were also investigated as to their redox properties in nonaqueous media. A reversible one-electron oxidation occurs at E 1/2 values between 0.42 and 0.89 V versus SCE depending upon the solvent and number of fluorine substituents on the compounds, and this is followed by a second reversible one-electron abstraction at E 1/2 = 0.86 to 1.18 V in CH 2Cl 2, THF, or PhCN. Two reductions of each corrole are also observed in the three solvents. A linear relationship is observed between E 1/2 for oxidation or reduction and the number of electron-withdrawing fluorine groups on the compounds, and the magnitude of the substituent effect is compared to what is observed in the case of tetraphenylporphyrins containing meso -substituted C 6F 5 substituents. The electrochemically generated forms of the corrole can exist with Co(I), Co(II), or Co(IV) central metal ions, and the site of the electron-transfer in each oxidation or reduction of the initial Co(III) complex was examined by UV-vis spectroelectrochemistry. ESR characterization was also used to characterize singly oxidized (F 5PhMes 2Cor)Co, which is unambiguously assigned as a Co(III) radical cation rather than the expected Co(IV) corrole with an unoxidized macrocyclic ring.  相似文献   

10.
Protonated meso-substituted free-base macrocycles of the form [(Cor)H4]+, [(Cor)H5]2+, and [(Cor)H6]3+ where Cor is the trianion of a given corrole, were chemically generated from neutral (Cor)H3 in benzonitrile by addition of trifluoroacetic acid (TFA) and characterized as to their relative acidity, electrochemistry, and spectroelectrochemistry. Three types of protonated free-base corroles with different electron-donating or electron-withdrawing substituents at the meso positions of the macrocycle were investigated. One is protonated exclusively at the central nitrogens of the corrole forming [(Cor)H4]+ from (Cor)H3, while the second and third types of corroles undergo protonation at one or two meso pyridyl substituents prior to protonation of the central nitrogens and give as the final products [(Cor)H5]2+ and [(Cor)H6]3+, respectively. Altogether the relative deprotonation constants (pKa) for 10 different corroles were determined in benzonitrile and analyzed with respect to the molecular structure and/or type of substituents on the three meso positions of the macrocycle. Mechanisms for oxidation and reduction of the protonated corroles are proposed in light of the electrochemical and spectroelectrochemical data.  相似文献   

11.
In this study, novel water‐soluble corrole amino acid conjugates were synthesized and characterized. The coupling reaction of A2B‐ and A3‐corroles with glycine ethyl ester and taurine under strong basic conditions proved to be successful and yielded di‐ and trifunctionalized corrole amino acid conjugates in good yields. The subsequent metalation of the corrole/amino acid conjugates broadens the scope for applications considerably. As examples, we herein show the catalytic activity of the Mn(III) A3‐corrole towards O2 evolution. First we employed tert‐butyl hydroperoxide (t‐BuOOH) as oxidant to obtain the Mn(V)oxo species and tetrabutyl ammonium hydroxide (TBAH) as hydroxide donor agent. Furthermore, the binding properties of the non‐metalated and the Mn(III) A3‐corrole/amino sulfonic acid conjugates and transport of proteins were investigated and the conjugates exhibited binding to human serum albumin (HSA). Finally, a novel Ga(III) A3‐corrole/amino sulfonic acid derivative was synthesized and we briefly describe the photophysical properties of this compound. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Cationic meso(4‐N‐methylpyridyl)‐based metallocorroles, μ‐oxo iron corrole dimer ( 1b ) and manganese corrole monomer ( 2b ), were synthesized and characterized. The interactions of these two metal corrole complexes with CT‐DNA were studied by UV–visible, fluorescence and circular dichroism spectroscopic methods, as well as by viscosity measurements. The results revealed that 1b interacts with CT‐DNA in a difunctional binding mode, i.e. non‐classical intercalation and outside groove binding with H‐aggregation, while 2b can interact with CT‐DNA via an outside groove binding mode only. The binding constants Kb of 1b and 2b were 4.71 × 105 m ?1 and 2.17 × 105 m ?1, respectively, indicating that 1b can bind more tightly to CT‐DNA than 2b . Furthermore, both complexes may cleave the supercoiled plasmid DNA efficiently in the presence of hydrogen peroxide or tert‐butyl hydroperoxide (TBHP), albeit 1b exhibited a little higher efficiency. The inhibitor tests suggested that singlet oxygen and high‐valent (oxo)iron(VI) corrole or (oxo)manganese(V) corrole might be the active intermediates responsible for the oxidative DNA scission. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
The rotating ring disk electrode method has been used to study O2 electroreduction with metal corroles. Catalysis begins at potentials that are 0.5-0.7 V more positive than the expected potential of the M(III/II) couple based on studies in non-aqueous solutions. The path of O2 reduction depends on the nature of the metal ion. Cobalt corroles promote O2 reduction to H2O2. Iron corroles catalyse O2 reduction via parallel two- and four-electron pathways, with a predominate four-electron reaction. The rate constants for the individual O2 reduction paths are given at pH 7. Mechanisms are proposed on the basis of pH dependence, inhibition studies, and Tafel slopes. An imidazole-tailed iron corrole catalyses H2O2 disproportionation analogous to catalase.  相似文献   

14.
The aim of this research was to prepare mononuclear ruthenium corroles, because of the well-documented potency of analogous porphyrin complexes in catalysis. The syntheses of the mononuclear nitrosyl complexes [Ru(tpfc)(NO)] and [Ru(tdcc)(NO)] (tpfc=trianion of 5,10,15-tris(pentafluorophenyl)corrole, tdcc=trianion of 5,10,15-tris(2,6-dichlorophenyl)corrole), and of the binuclear [[Ru(tpfc)](2)] were achieved by using [[Ru(cod)Cl(2)](x)] (cod=cyclooctadiene) as the metal source. The NMR spectra of all three complexes clearly demonstrate that they are diamagnetic; this is consistent with a triple bond between the metal ions in [[Ru(tpfc)](2)] and is expected for classical [MNO](6) complexes. These features were further substantiated by the stretching frequencies of the [MNO] moieties, electrochemical measurements on all complexes, and the X-ray crystal structures of [Ru(tpfc)(NO)] and [[Ru(tpfc)](2)]. A comparison of the spectroscopic and structural characteristics of these new complexes with analogous iron corroles, as well as with iron and ruthenium porphyrins, suggests that it will be hard to obtain mononuclear ruthenium corroles without pi-accepting ligands.  相似文献   

15.
采用微量光度滴定法测定了两种具有不同取代基的新型咔咯化合物,三(4-氯苯基)咔咯(化合物1)和三(2,4-二氯苯基)咔咯(化合物2)在非水溶剂中的质子化和去质子化常数。结果表明:化合物1和化合物2在二氯甲烷中均可以与三氟乙酸反应得到一个质子生成正一价阳离子,其质子化常数(lgKb)分别为4.2和4.0。在甲醇溶液中,化合物1和化合物2与氢氧化钠反应时可以失去一个质子生成负一价阴离子,其去质子化常数(lgKa)分别为3.4和3.5。而在二氯甲烷中与碱反应时,化合物1和化合物2均能够一步失去两个质子生成负二价阴离子,其累积去质子化常数(lgβ2)分别为7.9和11.0。  相似文献   

16.
Reductive demetalation of manganese corroles: The substituent effect   总被引:1,自引:0,他引:1  
The reductive demetalation of manganese corroles was investigated in CH2Cl2/HCl (aqueous) solvent by using SnCl2 as reducing agent. It was found that the demetalation yields depend on the substituents of corrole macrocycle significantly. Electron- rich manganese corrole undergoes reductive demetalation more easily than electron-deficient ones. The isolated reductive demetalation yield of manganese 5,10,15-tris(phenyl)corrole in present system is moderate (46%). As for electron-deficient Mn(Ⅲ) 5,10,15-tris(pentafluorophenyl)corrole, the acid-induced demetalation in HOAc-HESO4 (V/V = 3:1) is preferable with an isolated yield of 67%.  相似文献   

17.
The oxidation reaction of M(tpfc) [M = Mn or Cr and tpfc = tris(pentafluorophenyl)corrole] with aryl azides under photolytic or thermal conditions gives the first examples of mononuclear imido complexes of manganese(V) and chromium(V). These complexes have been characterized by NMR, mass spectrometry, UV-vis, EPR, elemental analysis, and cyclic voltammetry. Two X-ray structures have been obtained for Mn(tpfc)(NMes) and Cr(tpfc)(NMes) [Mes = 2,4,6-(CH(3))(3)C(6)H(2)]. Short metal-imido bonds (1.610 and 1.635 Angstroms) as well as nearly linear M-N-C angles are consistent with triple M triple-bond NR bond formation. The kinetics of nitrene [NR] group transfer from manganese(V) corroles to various organic phosphines have been defined. Reduction of the manganese(V) corrolato complex affords phosphine imine and Mn(III) with reaction rates that are sensitive to steric and electronic elements of the phosphine substrate. An analogous manganese complex with a variant corrole ligand containing bromine atoms in the beta-pyrrole positions, Mn(Br(8)tpfc)(NAr), has been prepared and studied. Its reaction with PEt(3) is 250x faster than that of the parent tpfc complex, and its Mn(V/IV) couple is shifted by 370 mV to a more positive potential. The EPR spectra of chromium(V) imido corroles reveal a rich signal at ambient temperature consistent with Cr(V) triple-bond NR (d(1), S = 1/2) containing a localized spin density in the d(xy) orbital, and an anisotropic signal at liquid nitrogen temperature. Our results demonstrate the synthetic utility of organic aryl azides in the preparation of mononuclear metal imido complexes previously considered elusive, and suggest strong sigma-donation as the underlying factor in stabilizing high-valent metals by corrole ligands.  相似文献   

18.
Three corroles, which differ by their cavity's core, namely, diamagnetic free-base tris(pentafluorophenyl)corrole and its gallium(III) complex and the paramagnetic oxo-chromium(V) complex, were studied by steady-state and time-resolved electron paramagnetic resonance (EPR) spectroscopy. The magnetic and orientational parameters of the corroles, oriented in a nematic liquid crystal, were determined and interpreted in terms of their structure, geometry, and excited states spin dynamics. It was shown that both diamagnetic corroles, photoexcited to their triplet states, exhibit similar EPR line shapes, which is characterized by a negative zero-field splitting parameter, D, whose origin is due to molecular "stretching". Photoexcited Cr(V)O-corrole exhibits polarized ground-state EPR spectrum in emission mode. This polarization stems from the sequence of photophysical and photochemical reactions, involving the formation of the trip-quartet/trip-doublet composite states and their selective quenching via a charge transfer state.  相似文献   

19.
A number of third-row transition-metal corroles have remained elusive as synthetic targets until now, notably osmium, platinum, and gold corroles. Against this backdrop, we present a simple and general synthesis of β-unsubstituted gold(III) triarylcorroles and the first X-ray crystal structure of such a complex. Comparison with analogous copper and silver corrole structures, supplemented by extensive scalar-relativistic, dispersion-corrected density functional theory calculations, suggests that "inherent saddling" may occur for of all coinage metal corroles. The degree of saddling, however, varies considerably among the three metals, decreasing conspicuously along the series Cu > Ag > Au. The structural differences reflect significant differences in metal-corrole bonding, which are also reflected in the electrochemistry and electronic absorption spectra of the complexes. From Cu to Au, the electronic structure changes from noninnocent metal(II)-corrole(?2-) to relatively innocent metal(III)-corrole(3-).  相似文献   

20.
Four free-base corroles with electron-donating or electron-withdrawing groups on the para or 2 through 6-positons of the meso phenyl rings were prepared via either Paolesse or Gross conditions and investigated for their absorption and emission properties. The triaryl corroles 5,10,15-triphenylcorrole, 5,10,15-tris(pentafluorophenyl)corrole, 5,10,15-tris(p-nitrophenyl)corrole, and 5,10,15-tris(p-methoxyphenyl)corrole were examined. Absorption, steady-state, and time-resolved fluorescence measurements were performed on all compounds in both nonpolar (dichloromethane) and polar (dimethylacetamide) solvents. The experimental evidence points to hydrogen bonding with an internal N-H group as the most likely factor in the solvent-dependent photophysical behavior of these corroles, that is also highly dependent upon substitution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号