首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Over the last few decades several methods have been proposed for handling functional constraints while solving optimization problems using evolutionary algorithms (EAs). However, the presence of equality constraints makes the feasible space very small compared to the entire search space. As a consequence, the handling of equality constraints has long been a difficult issue for evolutionary optimization methods. This paper presents a Hybrid Evolutionary Algorithm (HEA) for solving optimization problems with both equality and inequality constraints. In HEA, we propose a new local search technique with special emphasis on equality constraints. The basic concept of the new technique is to reach a point on the equality constraint from the current position of an individual solution, and then explore on the constraint landscape. We believe this new concept will influence the future research direction for constrained optimization using population based algorithms. The proposed algorithm is tested on a set of standard benchmark problems. The results show that the proposed technique works very well on those benchmark problems.  相似文献   

2.
In this paper we study search heuristics for box decomposition methods that solve problems such as global optimization, minimax optimization, or quantified constraint solving. For this we unify these methods under a branch-and-bound framework, and develop a model that is more convenient for studying heuristics for such algorithms than the traditional models from Artificial Intelligence. We use the result to prove various theorems about heuristics and apply the outcome to the box decomposition methods under consideration. We support the findings with timings for the method of quantified constraint solving developed by the author.  相似文献   

3.
Traditionally, minimum cost transshipment problems have been simplified as linear cost problems, which are not practical in real applications. Some advanced local search algorithms have been developed to solve concave cost bipartite network problems. These have been found to be more effective than the traditional linear approximation methods and local search methods. Recently, a genetic algorithm and an ant colony system algorithm were employed to develop two global search algorithms for solving concave cost transshipment problems. These two global search algorithms were found to be more effective than the advanced local search algorithms for solving concave cost transshipment problems. Although the particle swarm optimization algorithm has been used to obtain good results in many applications, to the best of our knowledge, it has not yet been applied in minimum concave cost network flow problems. Thus, in this study, we employ an arc-based particle swarm optimization algorithm, coupled with some genetic algorithm and threshold accepting method techniques, as well as concave cost network heuristics, to develop a hybrid global search algorithm for efficiently solving minimum cost network flow problems with concave arc costs. The proposed algorithm is evaluated by solving several randomly generated network flow problems. The results indicate that the proposed algorithm is more effective than several other recently designed methods, such as local search algorithms, genetic algorithms and ant colony system algorithms, for solving minimum cost network flow problems with concave arc costs.  相似文献   

4.
During the last years, interest on hybrid metaheuristics has risen considerably in the field of optimization and machine learning. The best results found for many optimization problems in science and industry are obtained by hybrid optimization algorithms. Combinations of optimization tools such as metaheuristics, mathematical programming, constraint programming and machine learning, have provided very efficient optimization algorithms. Four different types of combinations are considered in this paper: (i) Combining metaheuristics with complementary metaheuristics. (ii) Combining metaheuristics with exact methods from mathematical programming approaches which are mostly used in the operations research community. (iii) Combining metaheuristics with constraint programming approaches developed in the artificial intelligence community. (iv) Combining metaheuristics with machine learning and data mining techniques.  相似文献   

5.
Surrogate constraint methods have been embedded in a variety of mathematical programming applications over the past thirty years, yet their potential uses and underlying principles remain incompletely understood by a large segment of the optimization community. In a number of significant domains of combinatorial optimization, researchers have produced solution strategies without recognizing that they can be derived as special instances of surrogate constraint methods. Once the connection to surrogate constraint ideas is exposed, additional ways to exploit this framework become visible, frequently offering opportunities for improvement.We provide a tutorial on surrogate constraint approaches for optimization in graphs, illustrating the key ideas by reference to independent set and graph coloring problems, including constructions for weighted independent sets which have applications to associated covering and weighted maximum clique problems. In these settings, the surrogate constraints can be generated relative to well-known packing and covering formulations that are convenient for exposing key notions. The surrogate constraint approaches yield widely used heuristics for identifying independent sets as simple special cases, and also afford previously unidentified heuristics that have greater power in these settings. Our tutorial also shows how the use of surrogate constraints can be placed within the context of vocabulary building strategies for independent set and coloring problems, providing a framework for applying surrogate constraints that can be used in other applications.At a higher level, we show how to make use of surrogate constraint information, together with specialized algorithms for solving associated sub-problems, to obtain stronger objective function bounds and improved choice rules for heuristic or exact methods. The theorems that support these developments yield further strategies for exploiting surrogate constraint relaxations, both in graph optimization and integer programming generally.  相似文献   

6.
Among the penalty based approaches for constrained optimization, augmented Lagrangian (AL) methods are better in at least three ways: (i) they have theoretical convergence properties, (ii) they distort the original objective function minimally, thereby providing a better function landscape for search, and (iii) they can result in computing optimal Lagrange multiplier for each constraint as a by-product. Instead of keeping a constant penalty parameter throughout the optimization process, these algorithms update the parameters (called multipliers) adaptively so that the corresponding penalized function dynamically changes its optimum from the unconstrained minimum point to the constrained minimum point with iterations. However, the flip side of these algorithms is that the overall algorithm requires a serial application of a number of unconstrained optimization tasks, a process that is usually time-consuming and tend to be computationally expensive. In this paper, we devise a genetic algorithm based parameter update strategy to a particular AL method. The proposed strategy updates critical parameters in an adaptive manner based on population statistics. Occasionally, a classical optimization method is used to improve the GA-obtained solution, thereby providing the resulting hybrid procedure its theoretical convergence property. The GAAL method is applied to a number of constrained test problems taken from the evolutionary algorithms (EAs) literature. The number of function evaluations required by GAAL in most problems is found to be smaller than that needed by a number of existing evolutionary based constraint handling methods. GAAL method is found to be accurate, computationally fast, and reliable over multiple runs. Besides solving the problems, the proposed GAAL method is also able to find the optimal Lagrange multiplier associated with each constraint for the test problems as an added benefit??a matter that is important for a sensitivity analysis of the obtained optimized solution, but has not yet been paid adequate attention in the past evolutionary constrained optimization studies.  相似文献   

7.
Due to the vagaries of optimization problems encountered in practice, users resort to different algorithms for solving different optimization problems. In this paper, we suggest and evaluate an optimization procedure which specializes in solving a wide variety of optimization problems. The proposed algorithm is designed as a generic multi-objective, multi-optima optimizer. Care has been taken while designing the algorithm such that it automatically degenerates to efficient algorithms for solving other simpler optimization problems, such as single-objective uni-optimal problems, single-objective multi-optima problems and multi-objective uni-optimal problems. The efficacy of the proposed algorithm in solving various problems is demonstrated on a number of test problems chosen from the literature. Because of its efficiency in handling different types of problems with equal ease, this algorithm should find increasing use in real-world optimization problems.  相似文献   

8.
In this paper we discuss about numerical methods for aerodynamic shape optimization problems. These problems require efficient CFD techniques to solve the state (as well as costate) equations and fast algorithms for solving the optimization problems. Both of these are independent active areas of research since long time. Wide range of applications in science and engineering involve solution of optimization problems where the governing PDEs appear as constraints. Therefore, merging the two for the purpose of practical applicability is relatively new. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
This is a summary of the author’s Ph.D. thesis supervised by Federico Malucelli and defended on 15 May 2008 at the Politecnico di Milano. The thesis is written in English and is available from the author upon request. This work presents new methods for enhancing the Column Generation approach based on Constraint Programming when it is used for solving combinatorial optimization problems. The methods proposed focus on the interactions between the linear programming solver and the constraint programming solver, and on how they impact on both a single iteration and the overall execution of the Column Generation procedure. The result of this work is the design and implementation of general-purpose optimization algorithms, whose efficiency is proven by solving two very different problems: the Minimum Graph Coloring Problem and a resource allocation problem arising in Wireless Ad Hoc Networks.  相似文献   

10.
This paper deals with iterative gradient and subgradient methods with random feasibility steps for solving constrained convex minimization problems, where the constraint set is specified as the intersection of possibly infinitely many constraint sets. Each constraint set is assumed to be given as a level set of a convex but not necessarily differentiable function. The proposed algorithms are applicable to the situation where the whole constraint set of the problem is not known in advance, but it is rather learned in time through observations. Also, the algorithms are of interest for constrained optimization problems where the constraints are known but the number of constraints is either large or not finite. We analyze the proposed algorithm for the case when the objective function is differentiable with Lipschitz gradients and the case when the objective function is not necessarily differentiable. The behavior of the algorithm is investigated both for diminishing and non-diminishing stepsize values. The almost sure convergence to an optimal solution is established for diminishing stepsize. For non-diminishing stepsize, the error bounds are established for the expected distances of the weighted averages of the iterates from the constraint set, as well as for the expected sub-optimality of the function values along the weighted averages.  相似文献   

11.
In this paper, we consider a class of nonlinear minimum-maximum optimization problems subject to boundedness constraints on the decision vectors. Three algorithms are developed for finding the min-max point using the concept of solving an associated dynamical system. In the first and third algorithms, solutions are obtained by solving systems of differential equations. The second algorithm is a discrete version of the first algorithm. The trajectories generated by the first and second algorithms may move inside or on the boundary of the constraint set, while the third algorithm ensures that any trajectory that begins inside the constraint region remains in its interior. Sufficient conditions for global convergence of the two algorithms are also established. For illustration, four numerical examples are solved.This work was partially supported by a research grant from the Australian Research Committee.  相似文献   

12.
We propose regularized cutting-plane methods for solving mixed-integer nonlinear programming problems with nonsmooth convex objective and constraint functions. The given methods iteratively search for trial points in certain localizer sets, constructed by employing linearizations of the involved functions. New trial points can be chosen in several ways; for instance, by minimizing a regularized cutting-plane model if functions are costly. When dealing with hard-to-evaluate functions, the goal is to solve the optimization problem by performing as few function evaluations as possible. Numerical experiments comparing the proposed algorithms with classical methods in this area show the effectiveness of our approach.  相似文献   

13.
Global constraints provide strong filtering algorithms to reduce the search space when solving large combinatorial problems. In this paper we propose to make the global constraints dynamic, i.e., to allow extending the set of constrained variables during search. We describe a generic dynamisation technique for an arbitrary monotonic global constraint and we compare it with the semantic-based dynamisation for the alldifferent constraint. At the end we sketch a dynamisation technique for non-monotonic global constraints. A comparison with existing methods to model dynamic problems is given as well.  相似文献   

14.
Using the least squares, modified Lagrangian function, and some other methods as examples, the capabilities of the new optimization technique based on the quadratic approximation of penalty functions that has been recently proposed by O. Mangasarian for a special class of linear programming problems are demonstrated. The application of this technique makes it possible to use unified matrix operations and standard linear algebra packages (including parallel ones) for solving large-scale problems with sparse strongly structured constraint matrices. With this technique, the computational schemes of some well-known algorithms can take an unexpected form.  相似文献   

15.
Optimizing construction project scheduling has received a considerable amount of attention over the past 20 years. As a result, a plethora of methods and algorithms have been developed to address specific scenarios or problems. A review of the methods and algorithms that have been developed to examine the area of construction schedule optimization (CSO) is undertaken. The developed algorithms for solving the CSO problem can be classified into three methods: mathematical, heuristic and metaheuristic. The application of these methods to various scheduling problems is discussed and implications for future research are identified.  相似文献   

16.
In this paper, we propose a new whale army optimization algorithm with a view to solving multifarious optimization problems. The key novelty of our approach is to modify the original whale optimization algorithm to make it effective to solve the complicated, large-scale and constrained optimization problems. Our modifications mainly embody two aspects: the beneficial strategic adjustment to set key parameters and to help establish base principles in the original optimizer and the introduction of armed force program which classifies the search whales into different categories to achieve efficient cooperation. We evaluate the performance of the proposed algorithm, using three simple benchmark test functions over thirty CEC-2014 real-parameter numerical optimization problems and three constraint engineering design problems. The test results indicate that this algorithm can provide a faster local convergence rate, a higher convergence accuracy, and a lower computational complexity in comparison to traditional whale optimization algorithms and other sophisticated state of the art whale optimizers. Performance wise, it also surpasses many advanced methods for large-scaled complex functions. Furthermore, in this paper we propose a variant of whale army optimization algorithm to specifically address and solve optimizing constrained problems with a high degree of precision.  相似文献   

17.
《Optimization》2012,61(3):403-419
In this article, the application of the electromagnetism-like method (EM) for solving constrained optimization problems is investigated. A number of penalty functions have been tested with EM in this investigation, and their merits and demerits have been discussed. We have also provided motivations for such an investigation. Finally, we have compared EM with two recent global optimization algorithms from the literature. We have shown that EM is a suitable alternative to these methods and that it has a role to play in solving constrained global optimization problems.  相似文献   

18.
“Classical” First Order (FO) algorithms of convex optimization, such as Mirror Descent algorithm or Nesterov’s optimal algorithm of smooth convex optimization, are well known to have optimal (theoretical) complexity estimates which do not depend on the problem dimension. However, to attain the optimality, the domain of the problem should admit a “good proximal setup”. The latter essentially means that (1) the problem domain should satisfy certain geometric conditions of “favorable geometry”, and (2) the practical use of these methods is conditioned by our ability to compute at a moderate cost proximal transformation at each iteration. More often than not these two conditions are satisfied in optimization problems arising in computational learning, what explains why proximal type FO methods recently became methods of choice when solving various learning problems. Yet, they meet their limits in several important problems such as multi-task learning with large number of tasks, where the problem domain does not exhibit favorable geometry, and learning and matrix completion problems with nuclear norm constraint, when the numerical cost of computing proximal transformation becomes prohibitive in large-scale problems. We propose a novel approach to solving nonsmooth optimization problems arising in learning applications where Fenchel-type representation of the objective function is available. The approach is based on applying FO algorithms to the dual problem and using the accuracy certificates supplied by the method to recover the primal solution. While suboptimal in terms of accuracy guaranties, the proposed approach does not rely upon “good proximal setup” for the primal problem but requires the problem domain to admit a Linear Optimization oracle—the ability to efficiently maximize a linear form on the domain of the primal problem.  相似文献   

19.
Nonlinear optimization algorithms are rarely discussed from a complexity point of view. Even the concept of solving nonlinear problems on digital computers is not well defined. The focus here is on a complexity approach for designing and analyzing algorithms for nonlinear optimization problems providing optimal solutions with prespecified accuracy in the solution space. We delineate the complexity status of convex problems over network constraints, dual of flow constraints, dual of multi-commodity, constraints defined by a submodular rank function (a generalized allocation problem), tree networks, diagonal dominant matrices, and nonlinear Knapsack problem's constraint. All these problems, except for the latter in integers, have polynomial time algorithms which may be viewed within a unifying framework of a proximity-scaling technique or a threshold technique. The complexity of many of these algorithms is furthermore best possible in that it matches lower bounds on the complexity of the respective problems. In general nonseparable optimization problems are shown to be considerably more difficult than separable problems. We compare the complexity of continuous versus discrete nonlinear problems and list some major open problems in the area of nonlinear optimization. MSC classification: 90C30, 68Q25  相似文献   

20.
Recent research in algorithms for solving global optimization problems using response surface methodology has shown that it is in general not possible to use one surrogate model for solving different kinds of problems. In this paper the approach of applying Dempster-Shafer theory to surrogate model selection and their combination is described. Various conflict redistribution rules have been examined with respect to their influence on the results. Furthermore, the implications of the surrogate model type, i.e. using combined, single or a hybrid of both, have been studied. The suggested algorithms were applied to several well-known global optimization test problems. The results indicate that the used approach leads for all problems to a thorough exploration of the variable domain, i.e. the vicinities of global optima could be detected, and that the global minima could in most cases be approximated with high accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号