首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider semi-discrete first-order finite difference schemes for a nonlinear degenerate convection?Cdiffusion equations in one space dimension, and prove an L 1 error estimate. Precisely, we show that the ${L^1_{\rm{loc}}}$ difference between the approximate solution and the unique entropy solution converges at a rate ${\mathcal{O}(\Delta x^{1/11})}$ , where ${\Delta x}$ is the spatial mesh size. If the diffusion is linear, we get the convergence rate ${\mathcal{O}(\Delta x^{1/2})}$ , the point being that the ${\mathcal{O}}$ is independent of the size of the diffusion.  相似文献   

2.
It is conjectured that the set ${\mathcal {G}}$ of the primitive roots modulo p has no decomposition (modulo p) of the form ${\mathcal {G}= \mathcal {A} +\mathcal {B}}$ with ${|\mathcal {A}|\ge 2}$ , ${|\mathcal {B} |\ge 2}$ . This conjecture seems to be beyond reach but it is shown that if such a decomposition of ${\mathcal {G}}$ exists at all, then ${|\mathcal {A} |}$ , ${|\mathcal {B} |}$ must be around p 1/2, and then this result is applied to show that ${\mathcal {G}}$ has no decomposition of the form ${\mathcal {G} =\mathcal {A} + \mathcal {B} + \mathcal {C}}$ with ${|\mathcal {A} |\ge 2}$ , ${|\mathcal {B} |\ge 2}$ , ${|\mathcal {C} |\ge 2}$ .  相似文献   

3.
Let $\mathcal{O }$ be an orbit of the group of Hamiltonian symplectomorphisms acting on the space of Lagrangian submanifolds of a symplectic manifold $(X,\omega ).$ We define a functional $\mathcal{C }:\mathcal{O } \rightarrow \mathbb{R }$ for each differential form $\beta $ of middle degree satisfying $\beta \wedge \omega = 0$ and an exactness condition. If the exactness condition does not hold, $\mathcal{C }$ is defined on the universal cover of $\mathcal{O }.$ A particular instance of $\mathcal{C }$ recovers the Calabi homomorphism. If $\beta $ is the imaginary part of a holomorphic volume form, the critical points of $\mathcal{C }$ are special Lagrangian submanifolds. We present evidence that $\mathcal{C }$ is related by mirror symmetry to a functional introduced by Donaldson to study Einstein–Hermitian metrics on holomorphic vector bundles. In particular, we show that $\mathcal{C }$ is convex on an open subspace $\mathcal{O }^+ \subset \mathcal{O }.$ As a prerequisite, we define a Riemannian metric on $\mathcal{O }^+$ and analyze its geodesics. Finally, we discuss a generalization of the flux homomorphism to the space of Lagrangian submanifolds, and a Lagrangian analog of the flux conjecture.  相似文献   

4.
Let ${\mathcal{F}}$ be a (0, 1) matrix. A (0, 1) matrix ${\mathcal{M}}$ is said to have ${\mathcal{F}}$ as a configuration if there is a submatrix of ${\mathcal{M}}$ which is a row and column permutation of ${\mathcal{F}}$ . We say that a matrix ${\mathcal{M}}$ is simple if it has no repeated columns. For a given ${v \in \mathbb{N}}$ , we shall denote by forb ${(v, \mathcal{F})}$ the maximum number of columns in a simple (0, 1) matrix with v rows for which ${\mathcal{F}}$ does not occur as a configuration. We say that a matrix ${\mathcal{M}}$ is maximal for ${\mathcal{F}}$ if ${\mathcal{M}}$ has forb ${(v, \mathcal{F})}$ columns. In this paper we show that for certain natural choices of ${\mathcal{F}}$ , forb ${(v, \mathcal{F})\leq\frac{\binom{v}{t}}{t+1}}$ . In particular this gives an extremal characterization for Steiner t-designs as maximal (0, 1) matrices in terms of certain forbidden configurations.  相似文献   

5.
We propose a first-order augmented Lagrangian algorithm (FALC) to solve the composite norm minimization problem $$\begin{aligned} \begin{array}{ll} \min \limits _{X\in \mathbb{R }^{m\times n}}&\mu _1\Vert \sigma (\mathcal{F }(X)-G)\Vert _\alpha +\mu _2\Vert \mathcal{C }(X)-d\Vert _\beta ,\\ \text{ subject} \text{ to}&\mathcal{A }(X)-b\in \mathcal{Q }, \end{array} \end{aligned}$$ where $\sigma (X)$ denotes the vector of singular values of $X \in \mathbb{R }^{m\times n}$ , the matrix norm $\Vert \sigma (X)\Vert _{\alpha }$ denotes either the Frobenius, the nuclear, or the $\ell _2$ -operator norm of $X$ , the vector norm $\Vert .\Vert _{\beta }$ denotes either the $\ell _1$ -norm, $\ell _2$ -norm or the $\ell _{\infty }$ -norm; $\mathcal{Q }$ is a closed convex set and $\mathcal{A }(.)$ , $\mathcal{C }(.)$ , $\mathcal{F }(.)$ are linear operators from $\mathbb{R }^{m\times n}$ to vector spaces of appropriate dimensions. Basis pursuit, matrix completion, robust principal component pursuit (PCP), and stable PCP problems are all special cases of the composite norm minimization problem. Thus, FALC is able to solve all these problems in a unified manner. We show that any limit point of FALC iterate sequence is an optimal solution of the composite norm minimization problem. We also show that for all $\epsilon >0$ , the FALC iterates are $\epsilon $ -feasible and $\epsilon $ -optimal after $\mathcal{O }(\log (\epsilon ^{-1}))$ iterations, which require $\mathcal{O }(\epsilon ^{-1})$ constrained shrinkage operations and Euclidean projection onto the set $\mathcal{Q }$ . Surprisingly, on the problem sets we tested, FALC required only $\mathcal{O }(\log (\epsilon ^{-1}))$ constrained shrinkage, instead of the $\mathcal{O }(\epsilon ^{-1})$ worst case bound, to compute an $\epsilon $ -feasible and $\epsilon $ -optimal solution. To best of our knowledge, FALC is the first algorithm with a known complexity bound that solves the stable PCP problem.  相似文献   

6.
In this paper, a general orthogonal transformation on the optimal quaternary sequence Families ${\mathcal{B}}$ and ${\mathcal{C}}$ is presented. Consequently, the known optimal Family ${\mathcal{D}}$ and a new optimal Family ${\mathcal{E}}$ are produced in a uniform method. In contrast to the known optimal Family ${\mathcal{D}}$ , the new Family ${\mathcal{E}}$ has the same parameters such as the sequence length 2(2 n ? 1), the family size 2 n , and the maximal nontrivial correlation value ${2^{\frac{n+1}{2}}+2}$ , where n is a positive integer, but with a different correlation function.  相似文献   

7.
In this paper, a projective-splitting method is proposed for finding a zero of the sum of $n$ maximal monotone operators over a real Hilbert space $\mathcal{H }$ . Without the condition that either $\mathcal{H }$ is finite dimensional or the sum of $n$ operators is maximal monotone, we prove that the sequence generated by the proposed method is strongly convergent to an extended solution for the problem, which is closest to the initial point. The main results presented in this paper generalize and improve some recent results in this topic.  相似文献   

8.
We study the structure of a metric n-Lie algebra G over the complex field C. Let G = SR be the Levi decomposition, where R is the radical of G and S is a strong semisimple subalgebra of G. Denote by m(G) the number of all minimal ideals of an indecomposable metric n-Lie algebra and R ⊥ the orthogonal complement of R. We obtain the following results. As S-modules, R ⊥ is isomorphic to the dual module of G/R. The dimension of the vector space spanned by all nondegenerate invariant symmetric bilinear forms on G is equal to that of the vector space of certain linear transformations on G; this dimension is greater than or equal to m(G) + 1. The centralizer of R in G is equal to the sum of all minimal ideals; it is the direct sum of R ⊥ and the center of G. Finally, G has no strong semisimple ideals if and only if R⊥■R.  相似文献   

9.
Let $\mathcal{R }$ be a prime ring of characteristic different from $2, \mathcal{Q }_r$ the right Martindale quotient ring of $\mathcal{R }, \mathcal{C }$ the extended centroid of $\mathcal{R }, \mathcal{I }$ a nonzero left ideal of $\mathcal{R }, F$ a nonzero generalized skew derivation of $\mathcal{R }$ with associated automorphism $\alpha $ , and $n,k \ge 1$ be fixed integers. If $[F(r^n),r^n]_k=0$ for all $r \in \mathcal{I }$ , then there exists $\lambda \in \mathcal{C }$ such that $F(x)=\lambda x$ , for all $x\in \mathcal{I }$ . More precisely one of the following holds: (1) $\alpha $ is an $X$ -inner automorphism of $\mathcal{R }$ and there exist $b,c \in \mathcal{Q }_r$ and $q$ invertible element of $\mathcal{Q }_r$ , such that $F(x)=bx-qxq^{-1}c$ , for all $x\in \mathcal{Q }_r$ . Moreover there exists $\gamma \in \mathcal{C }$ such that $\mathcal{I }(q^{-1}c-\gamma )=(0)$ and $b-\gamma q \in \mathcal{C }$ ; (2) $\alpha $ is an $X$ -outer automorphism of $\mathcal{R }$ and there exist $c \in \mathcal{Q }_r, \lambda \in \mathcal{C }$ , such that $F(x)=\lambda x-\alpha (x)c$ , for all $x\in \mathcal{Q }_r$ , with $\alpha (\mathcal{I })c=0$ .  相似文献   

10.
A family ${\mathcal{F} \subseteq 2^{[n]}}$ saturates the monotone decreasing property ${\mathcal{P}}$ if ${\mathcal{F}}$ satisfies ${\mathcal{P}}$ and one cannot add any set to ${\mathcal{F}}$ such that property ${\mathcal{P}}$ is still satisfied by the resulting family. We address the problem of finding the minimum size of a family saturating the k-Sperner property and the minimum size of a family that saturates the Sperner property and that consists only of l-sets and (l + 1)-sets.  相似文献   

11.
Let $\mathcal{A}$ and $\mathcal{B}$ be unital rings, and $\mathcal{M}$ be an $\left( {\mathcal{A},\mathcal{B}} \right)$ -bimodule, which is faithful as a left $\mathcal{A}$ -module and also as a right $\mathcal{B}$ -module. Let $\mathcal{U} = Tri\left( {\mathcal{A},\mathcal{M},\mathcal{B}} \right)$ be the triangular algebra. In this paper, we give some different characterizations of Lie higher derivations on $\mathcal{U}$ .  相似文献   

12.
Studying the injectivity of the Dirichlet to Neumann functional on the unit disk in the plane, we arrive at the nonlinear differential equation $S(f)=-\frac{1}{2}([f^\prime ]^2-1)$ , where $S(f)$ is the Schwarzian derivative of $f$ (cf. (1.2)). Let $\mathcal{S}$ be the set of solutions of this equation. In this article, we establish a correspondence between the set of solutions $\mathcal{S}$ and the projective linear transformations on the real projective line. Moreover, we use this to show that the quotient group $\mathbb{H }/\mathcal{T}_{2\pi }$ it is isomorphic to the group of biholomorphic automorphisms of the unit disk in the plane. Here $\mathcal{T}_{2\pi }$ and $\mathbb{H }$ denote the subgroups of $\mathcal{S}$ consisting of translations by integral multiples of $2\pi $ and those solutions with have positive derivative, respectively.  相似文献   

13.
In De Winter and Thas (Des Codes Cryptogr, 32, 153–166, 2004) a semipartial geometry ${\mathcal{S}(\overline{\mathcal{U})}}$ was constructed from any Buekenhout–Metz unital ${\mathcal{U}}$ in PG(2,q2), and it was shown that, although having the same parameters, ${\mathcal{S}(\overline{\mathcal{U})}\not\cong T_2^*(\mathcal{U})}$ , where ${T_2^*\mathcal{U}}$ is the semipartial geometry arising from the linear representation of ${\mathcal{U}}$ . In this note, we will first briefly overview what is known on the geometry ${\mathcal{S}(\overline{\mathcal{U})}}$ (providing shortened unpublished proofs for most results). Then we answer the following question of G. Ebert affirmatively: “Do non-isomorphic Buekenhout–Metz unitals ${\mathcal{U}_1}$ and ${\mathcal{U}_2}$ yield non-isomorphic semipartial geometries ${\mathcal{S}(\overline{\mathcal{U}}_1)}$ and ${\mathcal{S}(\overline{\mathcal{U}}_2)}$ ?”.  相似文献   

14.
We give an existence and uniqueness result for an evolution equation ${u_{t} + \mathcal{A}u = f}$ , with suitable boundary data and where ${\mathcal{A}}$ is a strictly monotone operator, in a non-cylindrical domain.  相似文献   

15.
In the given article, enveloping C*-algebras of AJW-algebras are considered. Conditions are given, when the enveloping C*-algebra of an AJW-algebra is an AW*-algebra, and corresponding theorems are proved. In particular, we proved that if $\mathcal{A}$ is a real AW*-algebra, $\mathcal{A}_{sa}$ is the JC-algebra of all self-adjoint elements of $\mathcal{A}$ , $\mathcal{A}+i\mathcal{A}$ is an AW*-algebra and $\mathcal{A}\cap i\mathcal{A} = \{0\}$ then the enveloping C*-algebra $C^*(\mathcal{A}_{sa})$ of the JC-algebra $\mathcal{A}_{sa}$ is an AW*-algebra. Moreover, if $\mathcal{A}+i\mathcal{A}$ does not have nonzero direct summands of type I2, then $C^*(\mathcal{A}_{sa})$ coincides with the algebra $\mathcal{A}+i\mathcal{A}$ , i.e. $C^*(\mathcal{A}_{sa})= \mathcal{A}+i\mathcal{A}$ .  相似文献   

16.
We consider a real reductive dual pair (G′, G) of type I, with rank ${({\rm G}^{\prime}) \leq {\rm rank(G)}}$ . Given a nilpotent coadjoint orbit ${\mathcal{O}^{\prime} \subseteq \mathfrak{g}^{{\prime}{*}}}$ , let ${\mathcal{O}^{\prime}_\mathbb{C} \subseteq \mathfrak{g}^{{\prime}{*}}_\mathbb{C}}$ denote the complex orbit containing ${\mathcal{O}^{\prime}}$ . Under some condition on the partition λ′ parametrizing ${\mathcal{O}^{\prime}}$ , we prove that, if λ is the partition obtained from λ by adding a column on the very left, and ${\mathcal{O}}$ is the nilpotent coadjoint orbit parametrized by λ, then ${\mathcal{O}_\mathbb{C}= \tau (\tau^{\prime -1}(\mathcal{O}_\mathbb{C}^{\prime}))}$ , where ${\tau, \tau^{\prime}}$ are the moment maps. Moreover, if ${chc(\hat\mu_{\mathcal{O}^{\prime}}) \neq 0}$ , where chc is the infinitesimal version of the Cauchy-Harish-Chandra integral, then the Weyl group representation attached by Wallach to ${\mu_{\mathcal{O}^{\prime}}}$ with corresponds to ${\mathcal{O}_\mathbb{C}}$ via the Springer correspondence.  相似文献   

17.
We prove that any derivation of the *-algebra ${LS({\mathcal{M}})}$ of all locally measurable operators affiliated with a properly infinite von Neumann algebra ${{\mathcal{M}}}$ is continuous with respect to the local measure topology ${t({\mathcal{M}})}$ . Building an extension of a derivation ${\delta:{\mathcal{M}}\rightarrow LS({\mathcal{M}})}$ up to a derivation from ${LS({\mathcal{M}})}$ into ${LS({\mathcal{M}})}$ , it is further established that any derivation from ${{\mathcal{M}}}$ into ${LS({\mathcal{M}})}$ is ${t({\mathcal{M}})}$ -continuous.  相似文献   

18.
A partial isometry V is said to be a split partial isometry if ${\mathcal{H}=R(V) + N(V)}$ , with R(V) ∩ N(V) = {0} (R(V) = range of V, N(V) = null-space of V). We study the topological properties of the set ${\mathcal{I}_0}$ of such partial isometries. Denote by ${\mathcal{I}}$ the set of all partial isometries of ${\mathcal{B}(\mathcal{H})}$ , and by ${\mathcal{I}_N}$ the set of normal partial isometries. Then $$\mathcal{I}_N\subset \mathcal{I}_0\subset \mathcal{I}, $$ and the inclusions are proper. It is known that ${\mathcal{I}}$ is a C -submanifold of ${\mathcal{B}(\mathcal{H})}$ . It is shown here that ${\mathcal{I}_0}$ is open in ${\mathcal{I}}$ , therefore is has also C -local structure. We characterize the set ${\mathcal{I}_0}$ , in terms of metric properties, existence of special pseudo-inverses, and a property of the spectrum and the resolvent of V. The connected components of ${\mathcal{I}_0}$ are characterized: ${V_0,V_1\in \mathcal{I}_0}$ lie in the same connected component if and only if $${\rm dim}\, R(V_0)= {\rm dim}\, R(V_1) \,\,{\rm and}\,\,\, {\rm dim}\, R(V_0)^\perp = {\rm dim}\, R(V_1)^\perp.$$ This result is known for normal partial isometries.  相似文献   

19.
The skewfield $\mathcal{K }(\partial )$ of rational pseudodifferential operators over a differential field $\mathcal{K }$ is the skewfield of fractions of the algebra of differential operators $\mathcal{K }[\partial ]$ . In our previous paper, we showed that any $H\in \mathcal{K }(\partial )$ has a minimal fractional decomposition $H=AB^{-1}$ , where $A,B\in \mathcal{K }[\partial ],\,B\ne 0$ , and any common right divisor of $A$ and $B$ is a non-zero element of $\mathcal{K }$ . Moreover, any right fractional decomposition of $H$ is obtained by multiplying $A$ and $B$ on the right by the same non-zero element of $\mathcal{K }[\partial ]$ . In the present paper, we study the ring $M_n(\mathcal{K }(\partial ))$ of $n\times n$ matrices over the skewfield $\mathcal{K }(\partial )$ . We show that similarly, any $H\in M_n(\mathcal{K }(\partial ))$ has a minimal fractional decomposition $H=AB^{-1}$ , where $A,B\in M_n(\mathcal{K }[\partial ]),\,B$ is non-degenerate, and any common right divisor of $A$ and $B$ is an invertible element of the ring $M_n(\mathcal{K }[\partial ])$ . Moreover, any right fractional decomposition of $H$ is obtained by multiplying $A$ and $B$ on the right by the same non-degenerate element of $M_n(\mathcal{K } [\partial ])$ . We give several equivalent definitions of the minimal fractional decomposition. These results are applied to the study of maximal isotropicity property, used in the theory of Dirac structures.  相似文献   

20.
This paper addresses the question of retrieving the triple ${(\mathcal X,\mathcal P, E)}$ from the algebraic geometry code ${\mathcal C = \mathcal C_L(\mathcal X, \mathcal P, E)}$ , where ${\mathcal X}$ is an algebraic curve over the finite field ${\mathbb F_q, \,\mathcal P}$ is an n-tuple of ${\mathbb F_q}$ -rational points on ${\mathcal X}$ and E is a divisor on ${\mathcal X}$ . If ${\deg(E)\geq 2g+1}$ where g is the genus of ${\mathcal X}$ , then there is an embedding of ${\mathcal X}$ onto ${\mathcal Y}$ in the projective space of the linear series of the divisor E. Moreover, if ${\deg(E)\geq 2g+2}$ , then ${I(\mathcal Y)}$ , the vanishing ideal of ${\mathcal Y}$ , is generated by ${I_2(\mathcal Y)}$ , the homogeneous elements of degree two in ${I(\mathcal Y)}$ . If ${n >2 \deg(E)}$ , then ${I_2(\mathcal Y)=I_2(\mathcal Q)}$ , where ${\mathcal Q}$ is the image of ${\mathcal P}$ under the map from ${\mathcal X}$ to ${\mathcal Y}$ . These three results imply that, if ${2g+2\leq m < \frac{1}{2}n}$ , an AG representation ${(\mathcal Y, \mathcal Q, F)}$ of the code ${\mathcal C}$ can be obtained just using a generator matrix of ${\mathcal C}$ where ${\mathcal Y}$ is a normal curve in ${\mathbb{P}^{m-g}}$ which is the intersection of quadrics. This fact gives us some clues for breaking McEliece cryptosystem based on AG codes provided that we have an efficient procedure for computing and decoding the representation obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号