首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
The conformational dependence of vicinal 15N-C-C-H coupling in N-methylacetamide as a model compound for coupling in the peptide backbone is investigated by means of the self-consistent perturbation formulation for coupling constants in the INDO approximation of self-consistent-field molecular orbital theory. Because the calculated coupling constants cover a range of at least 7 Hz, they should be useful in determining the ψ angles in peptides. The prediction of opposite signs for gauche and trans coupling indicates the need for sign determination. Non-negligible coupling constants of positive sign for the gauche arrangements are undoubtedly due to a substituent effect involving the lone pair electrons on the nitrogen and the π-electrons of the carbonyl group. Calculated results are compared with the available experimental data.  相似文献   

2.
C S Singh  D K Rai 《Pramana》1987,28(2):167-179
Coulomb-projected Born methods for the theoretical study of electron impact excitation of hydrogen and helium are reviewed. The results obtained by using different forms of Coulomb-projected Born methods are compared with other theoretical and experimental results and analyzed. The inadequacy of the variable charge Coulomb-projected Born approximation (VCCPB)—the most recent form of the Coulomb-projected Born methods—in giving good results in processes where exchange is dominant is discussed in detail. The ‘modified’ VCCPB approximation obtained by modifying the VCCPB method to remove its shortcomings is also discussed and its application to electron impact excitation of 23 s state of helium is studied.  相似文献   

3.
We present first-principles’ calculations of the structural, electronic, and effective mass properties of cubic Al1−x B x N ordered alloys. They are based on the density functional theory within the local density approximation, and the full-potential linear augmented plane-wave method. From such calculations we obtain the equilibrium lattice constants, the bulk moduli, the bandgap energies, and the effective masses along the (111), (100), and (110) directions. The results are used to give important information on characteristics analysis of AlBN-based quantum well devices, to provide the Luttinger-like valence band parameters and the effective masses of charge carriers, connecting the first-principles’ band calculations with effective-mass theory.  相似文献   

4.
We present new experimental data on thick target bremsstrahlung spectra generated from the interaction of energetic electrons with bulk matter. The ‘photon yields’ in terms of double differential cross-sections (DDCS) are measured for pure elements of thick targets: Ti (Z = 22), Ag (Z = 47), W (Z = 74) and Pt (Z = 78) under the impact of 10 keV electrons. Comparison of DDCS obtained from the experimental data is made with those predicted by Monte-Carlo (MC) calculations using PENELOPE code. A close agreement between the experimental data and the MC calculations is found for all the four targets within the experimental error of 16%. Furthermore, the ratios of DDCS of bremsstrahlung photons emitted from Ag, W and Pt with those from Ti as a function of photon energy are examined with a relatively lower uncertainty of about 10% and they are compared with MC calculations. A satisfactory agreement is found between the experiment and the calculations within some normalizing factors. The variations of DDCS as a function of Z and of photon energy are also studied which show that the DDCS vary closely with Z; however, some deviations are observed for ‘tip’ photons emitted from high Z targets.  相似文献   

5.
A K Jain  Kiran Jain 《Pramana》1985,25(3):267-273
To explore the Coriolis attenuation problem we have carried out a schematici 13/2 rotor plus single quasi-particle band-mixing calculation. The results reveal that the calculations are largely insensitive towards the location of the Fermi energy near the low-K single particle states only, and therefore are incapable of taking into account the transition from ‘full’ decoupling to ‘partial’ decoupling as the Fermi level is increased. We trace the possible reasons for this insensitivity and find that this may be primarily due to thebcs approximation for calculating the quasiparticle energies.  相似文献   

6.
A theoretical study is presented of the effects of solvent molecular motion on nuclear spin-spin coupling constants. Solvent molecules are treated as point dipoles arranged around the solute molecule in a cubic closest packed arrangement. Average dipole moment vectors are given by a rotational Boltzmann average and the resulting perturbation is included in the Fock matrices. Calculations of nuclear spin-spin coupling constants were performed by self-consistent perturbation theory in the INDO (intermediate neglect of differential overlap) approximation of self-consistent-field molecular orbital theory. Calculated results are compared with the experimental data as well as the results of previous models.  相似文献   

7.
Eric A Lord 《Pramana》1975,4(4):164-170
A new generalisation of Einstein’s theory is proposed which is invariant under conformal mappings. Two scalar fields are introduced in addition to the metric tensor field, so that two special choices of gauge are available for physical interpretation, the ‘Einstein gauge’ and the ‘atomic gauge’. The theory is not unique but contains two adjustable parameters ζ anda. Witha=1 the theory viewed from the atomic gauge is Brans-Dicke theory (ω=−3/2+ζ/4). Any other choice ofa leads to a creation-field theory. In particular the theory given by the choicea=−3 possesses a cosmological solution satisfying Dirac’s ‘large numbers’ hypothesis.  相似文献   

8.
In the present communication, we report a model Hamiltonian to study the interplay between the two long range orders of anti-ferromagnetism (AFM) and superconductivity (SC) in cuprate superconductors in presence of the intersite pairing effect. The BCS type but non-phonon pairing mechanism is considered among the electrons of two equivalent ‘Cu’ sites. The pairing among the electrons of two nearest neighbour non-equivalent ‘Cu’ sites is included in the Hamiltonian and its effect on the interplay of SC and AFM is investigated. The Hamiltonian is solved by the Green’s function method and the corresponding gap equations are calculated and solved selfconsistently. The influence of model parameters like AFM coupling (λ), SC couling (λ 1) and the coupling (λ 2) for intersite superconducting interactions on the gaps (SC and AFM) are studied numerically and the results are reported.  相似文献   

9.
We present the results of ab initio calculations of lattice dynamics and the second order elastic stiffness constants of nickel-based magnetic shape memory alloy Ni2MnIn in stoichiometric composition. The plane wave basis sets and pseudopotential method within spin-polarized generalized gradient approximation (σ-GGA) scheme of the density functional theory (DFT) is applied. Elastic constants are calculated by tetragonal and monoclinic isochoric strains on cubic L21 structure. The calculated elastic constants agree very well with the recent ultrasonic experimental data. Phonon dispersion spectra are investigated within linear response technique of the density functional perturbation theory (DFPT). A vibrational anomaly is observed in phonon spectra at the transverse acoustic mode (TA2) in [ζ ζ0] direction at wavevector ζ = 0.3 as an indication of the structural instability of the system to shear deformation. This anomaly is also verified by the low shear modulus and large elastic anisotropy ratio. Phonon dispersion curves are in excellent agreement with the results of recent neutron diffraction experiments.  相似文献   

10.
The elastic differential cross-section forē-Na scattering in the presence of non-resonant laser field is studied for the exchange of=0, 1, 2 photons. The undressed contribution is evaluated within the framework of the eikonal Born series approximation and the effect of exchange is taken into account via the Ochkur approximation. The sodium atom has been treated in the frozen core approximation with special attention to the effect of the dressing of the target by the laser field. The ‘dressing’ of the target leads to quite an increase in the cross-section over the ‘undressed’ value near the forward direction for the exchange of one or two photons.  相似文献   

11.
12.
The ultrasonic attenuation in thulium monochalcogenides TmX (X=S, Se and Te) has been studied theoretically with a modified Mason’s approach in the temperature and range 100 K to 300 K along 〈100〉, 〈110〉 〈111〉 crystallographic directions. The thulium monochalcogenides have attracted a lot of interest due to their complex physical and chemical characteristics. TmS, TmSe and TmTe are trivalent metal, mixed valence state, and divalent semiconductor, respectively. Coulomb and Born-Mayer potential is applied to evaluate the second- and third-order elastic constants. These elastic constants are used to compute ultrasonic parameters such as ultrasonic velocities, thermal relaxation time, and acoustic coupling constants that, in turn, are used to evaluate ultrasonic attenuation. A comparison of calculated ultrasonic parameters with available theoretical/experimental physical parameters gives information about classification of these materials.   相似文献   

13.
Ashcroft’s empty core (EMC) model potential is used to study the superconducting state parameters (SSPs) viz. electron-phonon coupling strength λ, Coulomb pseudopotential μ*, transition temperature T C , isotope effect exponent αand effective interaction strength N O V of some binary metallic glasses based on the superconducting (S), conditional superconducting (S’) and non-superconducting (NS) elements of the periodic table. Five local field correction functions proposed by Hartree (H), Taylor (T), Ichimaru-Utsumi (IU), Farid et al. (F) and Sarkar et al. (S) are used for the first time with EMC potential in the present investigation to study the screening influence on the aforesaid properties. The T C obtained from the H-local field correction function are in excellent agreement with available theoretical or experimental data. In the present computation, the use of the pseudo-alloy-atom model (PAA) was proposed and found successful. Present work results are in qualitative agreement with such earlier reported experimental values which confirm the superconducting phase in all metallic glasses. A strong dependency of the SSPs of the metallic glasses on the valence ‘Z’ is identified.   相似文献   

14.
Angeli  I. 《Hyperfine Interactions》2001,136(1-2):17-24
Experimental Coulomb isotope shifts δE Coul from K α transitions, and radius differences δ〈r 2 eμ measured by electron scattering and muonic atom X-rays were used to derive ‘experimental’ coefficients C 1,exp for 54 isotope pairs of 18 elements from Mo to U. A χ2-analysis shows that these experimental coefficients are – on average – 3.5% lower than the theoretical C 1 values calculated by Seltzer, or more precisely: C 1,exp=0.965(± 0.014)×C 1. The need for more accurate theoretical calculations is stressed, and consequences of this deviation are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
The elastic, electronic and thermodynamic properties of fluoro-perovskite KZnF3 have been calculated using the full-potential linearized augmented plane wave (FP-LAPW) method. The exchange-correlation potential is treated with the generalized gradient approximation of Perdew-Burke-Ernzerhof (GGA-PBE). Also, we have used the Engel and Vosko GGA formalism (GGA-EV) to improve the electronic band structure calculations. The calculated structural properties are in good agreement with available experimental and theoretical data. The elastic constants C ij are calculated using the total energy variation with strain technique. The shear modulus, Young’s modulus, Poisson’s ratio and the Lamé coefficients for polycrystalline KZnF3 aggregates are estimated in the framework of the Voigt-Reuss-Hill approximations. The ductility behavior of this compound is interpreted via the calculated elastic constants C ij . Electronic and bonding properties are discussed from the calculations of band structure, density of states and electron charge density. The thermodynamic properties are predicted through the quasi-harmonic Debye model, in which the lattice vibrations are taken into account. The variation of bulk modulus, lattice constant, heat capacities and the Debye temperature with pressure and temperature are successfully obtained.  相似文献   

16.
Trajectory calculations were performed using the three-point-charge model. The input parameters took values distributed over a wide range. Using experi mental distributions, each trajectory was assigned a ‘weight’; and the trajectories and their statistical ‘weights’ were used in obtaining initial distributions which in turn reproduced other experimental distributions, such as the angular distribution ofα-particles, very well. Some information about the initial distributions has been obtained. The effect of the anticorrelation, between the finalα and fragment energies, on the initial distributions has been examined.  相似文献   

17.
Completely self-consistent ab initio calculations of scattering of electrons between the lowest minima of the conduction band by short-wavelength phonons are performed for the first time for a group of А III В V semiconductor crystals. The structure constants, electron and vibrational spectra, and probabilities of scattering are calculated for the crystals from unified positions within the electronic density functional method. The theory does not involve any phenomenological assumptions on positions of minima in the conduction band, effective carrier masses, interatomic forces, or scattering probabilities. The electron-phonon coupling constants (the deformation potentials) for actual Γ−X, Γ−L, and XL transitions for scattering between the nonequivalent XX and LL valleys in the conduction bands of AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs, and InSb crystals with sphalerite structure are calculated. Results obtained are compared with theoretical calculations within the phenomenological rigid ion model and with those performed by the selfconsistent frozen phonon method.  相似文献   

18.
The structural, elastic and thermodynamic characteristics of CeGa2 compound in the AlB2 (space group: P6/mmm) and the omega trigonal (space group: P-3m1) type structures are investigated using the methods of density functional theory within the generalized gradient approximation (GGA). The thermodynamic properties of the considered structures are obtained through the quasi-harmonic Debye model. The results on the basic physical parameters, such as the lattice constant, the bulk modulus, the pressure derivative of bulk modulus, the phase-transition pressure (P t ) from P6/mmm to P-3m1 structure, the second-order elastic constants, Zener anisotropy factor, Poisson’s ratio, Young’s modulus, and the isotropic shear modulus are presented. In order to gain further information, the pressure and temperature-dependent behavior of the volume, the bulk modulus, the thermal expansion coefficient, the heat capacity, the entropy, Debye temperature and Grüneisen parameter are also evaluated over a pressure range of 0–6 GPa and a wide temperature range of 0–1800 K. The obtained results are in agreement with the available experimental and the other theoretical values.  相似文献   

19.
Social constructionists believe that experimental evidence plays a minimal role in the production of scientific knowledge, while rationalists such as myself believe that experimental evidence is crucial in it. As one historical example in support of the rationalist position, I trace in some detail the theoretical and experimental research that led to our understanding of beta decay, from Enrico Fermi’s pioneering theory of 1934 to George Sudarshan and Robert Marshak’s and Richard Feynman and Murray Gell-Mann’s suggestion in 1957 and 1958, respectively, of the VA theory of weak interactions. This is not a history of an unbroken string of successes, but one that includes incorrect experimental results, incorrect experiment-theory comparisons, and faulty theoretical analyses. Nevertheless, we shall see that the constraints that Nature imposed made the VA theory an almost inevitable outcome of this theoretical and experimental research.  相似文献   

20.
In this easy introduction to higher gauge theory, we describe parallel transport for particles and strings in terms of 2-connections on 2-bundles. Just as ordinary gauge theory involves a gauge group, this generalization involves a gauge ‘2-group’. We focus on 6 examples. First, every abelian Lie group gives a Lie 2-group; the case of U(1) yields the theory of U(1) gerbes, which play an important role in string theory and multisymplectic geometry. Second, every group representation gives a Lie 2-group; the representation of the Lorentz group on 4d Minkowski spacetime gives the Poincaré 2-group, which leads to a spin foam model for Minkowski spacetime. Third, taking the adjoint representation of any Lie group on its own Lie algebra gives a ‘tangent 2-group’, which serves as a gauge 2-group in 4d BF theory, which has topological gravity as a special case. Fourth, every Lie group has an ‘inner automorphism 2-group’, which serves as the gauge group in 4d BF theory with cosmological constant term. Fifth, every Lie group has an ‘automorphism 2-group’, which plays an important role in the theory of nonabelian gerbes. And sixth, every compact simple Lie group gives a ‘string 2-group’. We also touch upon higher structures such as the ‘gravity 3-group’, and the Lie 3-superalgebra that governs 11-dimensional supergravity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号