首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
An efficient fixed-parameter algorithm for 3-Hitting Set   总被引:1,自引:0,他引:1  
Given a collection C of subsets of size three of a finite set S and a positive integer k, the 3-Hitting Set problem is to determine a subset SS with |S′|k, so that S′ contains at least one element from each subset in C. The problem is NP-complete, and is motivated, for example, by applications in computational biology. Improving previous work, we give an O(2.270k+n) time algorithm for 3-Hitting Set, which is efficient for small values of k, a typical occurrence in some applications. For d-Hitting Set we present an O(ck+n) time algorithm with c=d−1+O(d−1).  相似文献   

2.
Approximation algorithms for Hamming clustering problems   总被引:1,自引:0,他引:1  
We study Hamming versions of two classical clustering problems. The Hamming radius p-clustering problem (HRC) for a set S of k binary strings, each of length n, is to find p binary strings of length n that minimize the maximum Hamming distance between a string in S and the closest of the p strings; this minimum value is termed the p-radius of S and is denoted by . The related Hamming diameter p-clustering problem (HDC) is to split S into p groups so that the maximum of the Hamming group diameters is minimized; this latter value is called the p-diameter of S.We provide an integer programming formulation of HRC which yields exact solutions in polynomial time whenever k is constant. We also observe that HDC admits straightforward polynomial-time solutions when k=O(logn) and p=O(1), or when p=2. Next, by reduction from the corresponding geometric p-clustering problems in the plane under the L1 metric, we show that neither HRC nor HDC can be approximated within any constant factor smaller than two unless P=NP. We also prove that for any >0 it is NP-hard to split S into at most pk1/7− clusters whose Hamming diameter does not exceed the p-diameter, and that solving HDC exactly is an NP-complete problem already for p=3. Furthermore, we note that by adapting Gonzalez' farthest-point clustering algorithm [T. Gonzalez, Theoret. Comput. Sci. 38 (1985) 293–306], HRC and HDC can be approximated within a factor of two in time O(pkn). Next, we describe a 2O(p/)kO(p/)n2-time (1+)-approximation algorithm for HRC. In particular, it runs in polynomial time when p=O(1) and =O(log(k+n)). Finally, we show how to find in

time a set L of O(plogk) strings of length n such that for each string in S there is at least one string in L within distance (1+), for any constant 0<<1.  相似文献   

3.
Permuting in place has been first analyzed by Knuth. It uses the cycle structure of the permutation. The elements of an array to be permuted are only moved when one sees a cycle leader (smallest element in its cycle). So the essential part of such an algorithm is to test an element i about whether it is a cycle leader.Recently, Keller [Inform. Process. Lett. 81 (2002) 119–125] introduced two stopping rules: “If the last cycle leader has been detected, all elements have been moved, and no further tests are necessary” (heuristic 1), respectively “If only r elements have not been moved, then proceeding along a cycle is only useful for r steps” (heuristic 2).We analyze the average costs of these modifications applied to the standard algorithm of Knuth; they are (n+2)Hn−5n/2−1/2nlogn and respectively ((2n+1)/4)H(n+1)/2+(1/2)H2(n+1)/2−(1/2)((n+1)/2−n/2)−(n+1)/2(n/2)logn, as opposed to (n+1)Hn−2nnlogn in the classical case.  相似文献   

4.
Martin Bokler   《Discrete Mathematics》2003,270(1-3):13-31
In this paper new lower bounds for the cardinality of minimal m-blocking sets are determined. Let r2(q) be the number such that q+r2(q)+1 is the cardinality of the smallest non-trivial line-blocking set in a plane of order q. If B is a minimal m-blocking set in PG(n,q) that contains at most qm+qm−1+…+q+1+r2(q)·(∑i=2mnm−1qi) points for an integer n′ satisfying mn′2m, then the dimension of B is at most n′. If the dimension of B is n′, then the following holds. The cardinality of B equals qm+qm−1+…+q+1+r2(q)(∑i=2mnm−1qi). For n′=m the set B is an m-dimensional subspace and for n′=m+1 the set B is a cone with an (m−2)-dimensional vertex over a non-trivial line-blocking set of cardinality q+r2(q)+1 in a plane skew to the vertex. This result is due to Heim (Mitt. Math. Semin. Giessen 226 (1996), 4–82). For n′>m+1 and q not a prime the number q is a square and for q16 the set B is a Baer cone. If q is odd and |B|<qm+qm−1+…+q+1+r2(q)(qm−1+qm−2), it follows from this result that the subspace generated by B has dimension at most m+1. Furthermore we prove that in this case, if , then B is an m-dimensional subspace or a cone with an (m−2)-dimensional vertex over a non-trivial line-blocking set of cardinality q+r2(q)+1 in a plane skew to the vertex. For q=p3h, p7 and q not a square we show this assertion for |B|qm+qm−1+…+q+1+q2/3·(qm−1+…+1).  相似文献   

5.
Orthonormal polynomials with weight ¦τ¦ exp(−τ4) have leading coefficients with recurrence properties which motivate the more general equations ξmm − 1 + ξm + ξm + 1) = γm2, M = 1, 2,…, where ξo is a fixed nonnegative value and γ1, γ2,… are positive constants. For this broader problem, the existence of a nonnegative solution is proved and criteria are found for its uniqueness. Then, for the motivating problem, an asymptotic expansion of its unique nonnegative solution is obtained and a fast computational algorithm, with error estimates, is given.  相似文献   

6.
We present an algorithm for linear programming which requires O(((m+n)n 2+(m+n)1.5 n)L) arithmetic operations wherem is the number of constraints, andn is the number of variables. Each operation is performed to a precision of O(L) bits.L is bounded by the number of bits in the input. The worst-case running time of the algorithm is better than that of Karmarkar's algorithm by a factor of .  相似文献   

7.
We consider the class of primitive stochastic n×n matrices A, whose exponent is at least (n2−2n+2)/2+2. It is known that for such an A, the associated directed graph has cycles of just two different lengths, say k and j with k>j, and that there is an α between 0 and 1 such that the characteristic polynomial of A is λn−αλnj−(1−α)λnk. In this paper, we prove that for any mn, if α1/2, then Am+kAmAm1wT, where 1 is the all-ones vector and wT is the left-Perron vector for A, normalized so that wT1=1. We also prove that if jn/2, n31 and , then Am+jAmAm1wT for all sufficiently large m. Both of these results lead to lower bounds on the rate of convergence of the sequence Am.  相似文献   

8.
Let f ε Cn+1[−1, 1] and let H[f](x) be the nth degree weighted least squares polynomial approximation to f with respect to the orthonormal polynomials qk associated with a distribution dα on [−1, 1]. It is shown that if qn+1/qn max(qn+1(1)/qn(1), −qn+1(−1)/qn(−1)), then fH[f] fn + 1 · qn+1/qn + 1(n + 1), where · denotes the supremum norm. Furthermore, it is shown that in the case of Jacobi polynomials with distribution (1 − t)α (1 + t)β dt, α, β > −1, the condition on qn+1/qn is satisfied when either max(α,β) −1/2 or −1 < α = β < −1/2.  相似文献   

9.
We present an algorithm to compute a Euclidean minimum spanning tree of a given setS ofN points inE d in timeO(F d (N,N) log d N), whereF d (n,m) is the time required to compute a bichromatic closest pair amongn red andm green points inE d . IfF d (N,N)=Ω(N 1+ε), for some fixed ɛ>0, then the running time improves toO(F d (N,N)). Furthermore, we describe a randomized algorithm to compute a bichromatic closest pair in expected timeO((nm logn logm)2/3+m log2 n+n log2 m) inE 3, which yields anO(N 4/3 log4/3 N) expected time, algorithm for computing a Euclidean minimum spanning tree ofN points inE 3. Ind≥4 dimensions we obtain expected timeO((nm)1−1/([d/2]+1)+ε+m logn+n logm) for the bichromatic closest pair problem andO(N 2−2/([d/2]+1)ε) for the Euclidean minimum spanning tree problem, for any positive ɛ. The first, second, and fourth authors acknowledge support from the Center for Discrete Mathematics and Theoretical Computer Science (DIMACS), a National Science Foundation Science and Technology Center under NSF Grant STC 88-09648. The second author's work was supported by the National Science Foundation under Grant CCR-8714565. The third author's work was supported by the Deutsche Forschungsgemeinschaft under Grant A1 253/1-3, Schwerpunktprogramm “Datenstrukturen und effiziente Algorithmen”. The last two authors' work was also partially supported by the ESPRIT II Basic Research Action of the EC under Contract No. 3075 (project ALCOM).  相似文献   

10.
Summability of spherical h-harmonic expansions with respect to the weight function ∏j=1d |xj|jj0) on the unit sphere Sd−1 is studied. The main result characterizes the critical index of summability of the Cesàro (C,δ) means of the h-harmonic expansion; it is proved that the (C,δ) means of any continuous function converge uniformly in the norm of C(Sd−1) if and only if δ>(d−2)/2+∑j=1d κj−min1jd κj. Moreover, it is shown that for each point not on the great circles defined by the intersection of the coordinate planes and Sd−1, the (C,δ) means of the h-harmonic expansion of a continuous function f converges pointwisely to f if δ>(d−2)/2. Similar results are established for the orthogonal expansions with respect to the weight functions ∏j=1d |xj|j(1−|x|2)μ−1/2 on the unit ball Bd and ∏j=1d xjκj−1/2(1−|x|1)μ−1/2 on the simplex Td. As a related result, the Cesàro summability of the generalized Gegenbauer expansions associated to the weight function |t|(1−t2)λ−1/2 on [−1,1] is studied, which is of interest in itself.  相似文献   

11.
A (p, q)-sigraph S is an ordered pair (G, s) where G = (V, E) is a (p, q)-graph and s is a function which assigns to each edge of G a positive or a negative sign. Let the sets E + and E consist of m positive and n negative edges of G, respectively, where m + n = q. Given positive integers k and d, S is said to be (k, d)-graceful if the vertices of G can be labeled with distinct integers from the set {0, 1, ..., k + (q – 1)d such that when each edge uv of G is assigned the product of its sign and the absolute difference of the integers assigned to u and v the edges in E + and E are labeled k, k + d, k + 2d, ..., k + (m – 1)d and –k, – (k + d), – (k + 2d), ..., – (k + (n – 1)d), respectively.In this paper, we report results of our preliminary investigation on the above new notion, which indeed generalises the well-known concept of (k, d)-graceful graphs due to B. D. Acharya and S. M. Hegde.  相似文献   

12.
The syntenic distance between two genomes is given by the minimum number of fusions, fissions, and translocations required to transform one into the other, ignoring the order of genes within chromosomes. Computing this distance is NP-hard. In the present work, we give a tight connection between syntenic distance and the incomplete gossip problem, a novel generalization of the classical gossip problem. In this problem, there are n gossipers, each with a unique piece of initial information; they communicate by phone calls in which the two participants exchange all their information. The goal is to minimize the total number of phone calls necessary to inform each gossiper of his set of relevant gossip which he desires to learn. As an application of the connection between syntenic distance and incomplete gossip, we derive an O(2O(nlogn)) algorithm to exactly compute the syntenic distance between two genomes with at most n chromosomes each. Our algorithm requires O(n2+2O(dlogd)) time when this distance is d, improving the O(n2+2O(d2)) running time of the best previous exact algorithm.  相似文献   

13.
We study the complexity of second-order indefinite elliptic problems −div(au) +bu=f(with homogeneous Dirichlet boundary conditions) over ad-dimensional domain Ω, the error being measured in theH1(Ω)-norm. The problem elementsfbelong to the unit ball ofWr, p, (Ω), wherep [2, ∞] andr>d/p. Information consists of (possibly adaptive) noisy evaluations off,a, orb(or their derivatives). The absolute error in each noisy evaluation is at most δ. We find that thenth minimal radius for this problem is proportional tonr/d+ δ and that a noisy finite element method with quadrature (FEMQ), which uses only function values, and not derivatives, is a minimal error algorithm. This noisy FEMQ can be efficiently implemented using multigrid techniques. Using these results, we find tight bounds on the -complexity (minimal cost of calculating an -approximation) for this problem, said bounds depending on the costc(δ) of calculating a δ-noisy information value. As an example, if the cost of a δ-noisy evaluation isc(δ) = δs(fors> 0), then the complexity is proportional to (1/)d/r + s.  相似文献   

14.
If X{Xv: v d} is a strictly stationary random field, with X0 bounded and expressible as a sum of indicator functions satisfying certain conditions, if the mixing coefficient α(s) is summable over d (that, is, ∑m md−1α(m)<∞), and if a mixing condition involving three sets is satisfied, then the third order cumulant Cum(XaXbXc) of X has a continuous spectral density. We do not begin with the assumption that the cumulants are absolutely summable.  相似文献   

15.
Greedily Finding a Dense Subgraph   总被引:3,自引:0,他引:3  
Given an n-vertex graph with nonnegative edge weights and a positive integer k ≤ n, our goal is to find a k-vertex subgraph with the maximum weight. We study the following greedy algorithm for this problem: repeatedly remove a vertex with the minimum weighted-degree in the currently remaining graph, until exactly k vertices are left. We derive tight bounds on the worst case approximation ratio R of this greedy algorithm: (1/2 + n/2k)2 − O(n − 1/3) ≤ R ≤ (1/2 + n/2k)2 + O(1/n) for k in the range n/3 ≤ k ≤ n and 2(n/k − 1) − O(1/k) ≤ R ≤ 2(n/k − 1) + O(n/k2) for k < n/3. For k = n/2, for example, these bounds are 9/4 ± O(1/n), improving on naive lower and upper bounds of 2 and 4, respectively. The upper bound for general k compares well with currently the best (and much more complicated) approximation algorithm based on semidefinite programming.  相似文献   

16.
We consider the Tikhonov regularizer fλ of a smooth function f ε H2m[0, 1], defined as the solution (see [1]) to We prove that if f(j)(0) = f(j)(1) = 0, J = m, …, k < 2m − 1, then ¦ffλ¦j2 Rλ(2k − 2j + 3)/2m, J = 0, …, m. A detailed analysis is given of the effect of the boundary on convergence rates.  相似文献   

17.
Let f: be a continuous, 2π-periodic function and for each n ε let tn(f; ·) denote the trigonometric polynomial of degree n interpolating f in the points 2kπ/(2n + 1) (k = 0, ±1, …, ±n). It was shown by J. Marcinkiewicz that limn → ∞0¦f(θ) − tn(f θ)¦p dθ = 0 for every p > 0. We consider Lagrange interpolation of non-periodic functions by entire functions of exponential type τ > 0 in the points kπ/τ (k = 0, ± 1, ± 2, …) and obtain a result analogous to that of Marcinkiewicz.  相似文献   

18.
Stability of the Rossby–Haurwitz (RH) wave of subspace H1Hn in an ideal incompressible fluid on a rotating sphere is analytically studied (Hn is the subspace of homogeneous spherical polynomials of degree n). It is shown that any perturbation of the RH wave evolves in such a way that its energy K(t) and enstrophy η(t) decrease, remain constant or increase simultaneously. A geometric interpretation of variations in the perturbation energy is given. A conservation law for arbitrary perturbations is obtained and used to classify all the RH-wave perturbations in four invariant sets Mn, M+n, Hn and M0nHn depending on the value of their mean spectral number χ(t)=η(t)/K(t). The energy cascade of growing (or decaying) perturbations has opposite directions in the sets Mn and M+n due to a hyperbolic dependence between K(t) and χ(t). A factor space with a factor norm of the perturbations is introduced using the invariant subspace Hn of neutral perturbations as the zero factor class. While the energy norm controls the perturbation part belonging to Hn, the factor norm controls the perturbation part orthogonal to Hn. It is shown that in the set Mn (χ(t)<n(n+1)), any nonzonal RH wave of subspace H1Hn (n2) is Liapunov unstable in the energy norm. This instability has nothing in common with the orbital (Poincaré) instability and is caused by asynchronous oscillations of two almost coinciding RH-wave solutions. It is also shown that the exponential instability is possible only in the invariant set M0nHn. A necessary condition for this instability is given. The condition states that the spectral number χ(t) of the amplitude of each unstable mode must be equal to n(n+1), where n is the RH-wave degree. The growth rate is estimated and the orthogonality of the unstable normal modes to the RH wave is shown. The instability in the invariant set M+n of small-scale perturbations (χ(t)>n(n+1)) is still open problem.  相似文献   

19.
For fC[−1, 1], let Hmn(fx) denote the (0, 1, …,anbsp;m) Hermite–Fejér (HF) interpolation polynomial of f based on the Chebyshev nodes. That is, Hmn(fx) is the polynomial of least degree which interpolates f(x) and has its first m derivatives vanish at each of the zeros of the nth Chebyshev polynomial of the first kind. In this paper a precise pointwise estimate for the approximation error |H2mn(fx)−f(x)| is developed, and an equiconvergence result for Lagrange and (0, 1, …, 2m) HF interpolation on the Chebyshev nodes is obtained. This equiconvergence result is then used to show that a rational interpolatory process, obtained by combining the divergent Lagrange and (0, 1, …, 2m) HF interpolation methods on the Chebyshev nodes, is convergent for all fC[−1, 1].  相似文献   

20.
We study an (n+1)(n≥ 3)-dimensional contact CR-submanifold of (n−1) contact CR-dimension in a (2m+1)-unit sphere S2m+1, and especially determine such submanifolds under the equality conditions appearing in (3.12). We also provide a sufficient condition in order for such a compact submanifold to be the model space given in the last Section 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号