首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
This paper presents the improvement and advantages of investigating magnetically aligned phospholipid bilayers (bicelles) utilizing electron paramagnetic resonance (EPR) spectroscopy at a microwave frequency of 35 GHz (Q-band) and at a high magnetic field strength of 1.25 T when compared to weaker magnetic fields for X-band EPR studies. The nitroxide spin label 3beta-doxyl-5alpha-cholestane (cholestane or CLS) was inserted into the bicelles and utilized to demonstrate the effects of macroscopic bilayer alignment through the measurement of orientational dependent hyperfine splittings. The effects of different lanthanide ions with varying degree of magnetic susceptibility anisotropy were examined. The requirement of minimal amounts of the Tm3+ and Dy3+ lanthanide ions for well-aligned bicelles were examined for Q-band and compared with amounts required for X-band bicelle alignment studies. At a magnetic field of 1.25 T (when compared to 0.63 T at X-band), the perpendicular and parallel orientation were aligned with lower concentrations of Dy3+ and Tm3+, respectively, and thereby eliminating/minimizing the unwanted effects associated with lanthanide-protein interactions. Thus, it is much easier to magnetically align phospholipid bilayers at Q-band when compared to X-band.  相似文献   

3.
A pulsed electron double resonance (PELDOR) setup working at S-band frequencies is introduced and its performance compared with an X-band setup. Furthermore, to verify experimentally that it is possible to disentangle the dipolar coupling nu(Dip) from the exchange coupling J by PELDOR we synthesized and investigated four bisnitroxide radicals. They exhibit in pairs the same distances r(AB) between the nitroxide moieties but only one of each pair possesses a non-zero J. The experimental values for r(AB) match the ones from molecular modeling very well for the molecules without exchange coupling. For one bisnitroxide it was possible to separate nu(Dip) from J and to ascertain the magnitude and sign of J to +11 MHz (antiferromagnetic spin-spin coupling).  相似文献   

4.
The design, construction, and performance of a multifrequency pulsed EPR and ENDOR probe for use at cryogenic temperatures are described. Interchangeable resonators based on a folded strip line design allow variation of the resonance frequency over a range of 5-11 GHz. Variable coupling to the resonator is achieved capacitively via a simple mechanical adjustment which is thermally and mechanically stable. The entire assembly is robust and easily fabricated. Common methods of analyzing the resonator parameters such as the Q-factor and coupling coefficient are discussed quantitatively. Probe performance data and multifrequency pulsed ENDOR spectra are presented.  相似文献   

5.
The paramagnetic metallocenes and decamethylmetallocenes (C(5)H(5))(2)M and (C(5)Me(5))(2)M with M=V (S=3/2), Mn (S=5/2 or 1/2), Co (S=1/2), and Ni (S=1) were studied by (1)H and (13)C solid-state MAS NMR spectroscopy. Near room temperature spinning sideband manifolds cover ranges of up to 1100 and 3500 ppm, and isotropic signal shifts appear between -260 and 300 ppm and between -600 and 1640 ppm for (1)H and (13)C NMR spectra, respectively. The isotropic paramagnetic signal shifts, which are related to the spin densities in the s orbital of ligand atoms, were discussed. A Herzfeld--Berger spinning sideband analysis of the ring carbon signals yielded the principal values of the paramagnetic shift tensors, and for metallocenes with a small g-factor anisotropy the electron spin density in the ligand pi system was determined from the chemical shift anisotropy. The unusual features of the (1)H and (13)C solid-state NMR spectra of manganocene were related to its chain structure while temperature-dependent (1)H MAS NMR studies reflected antiferromagnetic interaction between the spin centers.  相似文献   

6.
An improved 2D (13)C-(13)C CP(3) MAS NMR correlation experiment with mixing by true (1)H spin diffusion is presented. With CP(3), correlations can be detected over a much longer range than with direct (1)H-(13)C or (13)C-(13)C dipolar recoupling. The experiment employs a (1)H spin diffusion mixing period tau(m) sandwiched between two cross-polarization periods. An optimized CP(3) sequence for measuring polarization transfer on a length scale between 0.3 and 1.0 nm using short mixing times of 0.1 ms < tau(m) < 1 ms is presented. For such a short tau(m), cross talk from residual transverse magnetization of the donating nuclear species after a CP can be suppressed by extended phase cycling. The utility of the experiment for genuine structure determination is demonstrated using a self-aggregated Chl a/H(2)O sample. The number of intramolecular cross-peaks increases for longer mixing times and this obscures the intermolecular transfer events. Hence, the experiment will be useful for short mixing times only. For a short tau(m) = 0.1 ms, intermolecular correlations are detected between the ends of phytyl tails and ring carbons of neighboring Chl a molecules in the aggregate. In this way the model for the structure, with stacks of Chl a that are arranged back to back with interdigitating phytyl chains stretched between two bilayers, is validated.  相似文献   

7.
In this study, a 267-microm-diameter solenoid transceiver is used to acquire localized (1)H NMR spectra and the measured signal-to-noise ratio (SNR) at 500 MHz is shown to be within 20--30% of theoretical limits formulated by considering only its resistive losses. This is illustrated using a 100-microm-diameter globule of triacylglycerols (approximately 900mM) that may be an oocyte precursor in young Xenopus laevis frogs and a water sample containing choline at a concentration often found in live mammalian cells (approximately 33 mM). In chemical shift imaging (CSI) experiments performed using a few thousand total scans, the choline methyl line is shown to have an acceptable SNR in resolved volume elements containing only 50 pL of sample, and localized spectra are resolved from just 5 pL in the Xenopus globule. These findings demonstrate the feasibility of performing (1)H NMR on picoliter-scale sample volumes in biological cells and tissues and illustrate how the achieved SNR in spectroscopic images can be predicted with reasonable accuracy at microscopic spatial resolutions.  相似文献   

8.
Suppression of the residual water signal from proton magnetic resonance (MR) spectra recorded in human brain is a prerequisite to an accurate quantification of cerebral metabolites. Several postacquisition methods of residual water signal suppression have been reported but none of them provide a complete elimination of the residual water signal, thereby preventing reliable quantification of brain metabolites. In the present study, the elimination of the residual water signal by the Hankel Lanczos singular value decomposition method has been evaluated and optimized to provide fast automated processing of spectra. Model free induction decays, reproducing the proton signal acquired in human brain localized MR spectroscopy at short echo times (e.g., 20 ms), have been generated. The optimal parameters in terms of number of components and dimension of the Hankel data matrix allowing complete elimination of the residual water signal are reported.  相似文献   

9.
Laser-polarized 129Xe and a high-Tcsuperconducting quantum interference device (SQUID) are used to obtain magnetic resonance images in porous materials at a magnetic field of 2.3 mT, corresponding to a Larmor frequency of 27 kHz. Image resolution of 1 mm is obtained with gradients of only 1 mT/m. The resolution of xenon chemical shifts in different physicochemical environments at ultralow fields is also demonstrated. Details of the circulating flow optical pumping apparatus and the SQUID spectrometer are presented.  相似文献   

10.
Improved Lanczos algorithms for blackbox MRS data quantitation   总被引:2,自引:0,他引:2  
Magnetic resonance spectroscopy (MRS) has been shown to be a potentially important medical diagnostic tool. The success of MRS depends on the quantitative data analysis, i.e., the interpretation of the signal in terms of relevant physical parameters, such as frequencies, decay constants, and amplitudes. A variety of time-domain algorithms to extract parameters have been developed. On the one hand, there are so-called blackbox methods. Minimal user interaction and limited incorporation of prior knowledge are inherent to this type of method. On the other hand, interactive methods exist that are iterative, require user involvement, and allow inclusion of prior knowledge. We focus on blackbox methods. The computationally most intensive part of these blackbox methods is the computation of the singular value decomposition (SVD) of a Hankel matrix. Our goal is to reduce the needed computational time without affecting the accuracy of the parameters of interest. To this end, algorithms based on the Lanczos method are suitable because the main computation at each step, a matrix-vector product, can be efficiently performed by means of the fast Fourier transform exploiting the structure of the involved matrix. We compare the performance in terms of accuracy and efficiency of four algorithms: the classical SVD algorithm based on the QR decomposition, the Lanczos algorithm, the Lanczos algorithm with partial reorthogonalization, and the implicitly restarted Lanczos algorithm. Extensive simulation studies show that the latter two algorithms perform best.  相似文献   

11.
A double resonance method for imaging of solid materials containing quadrupole nuclei via the coupled protons is reported. The technique uses a static field gradient to encode the position on the protons and the method of double resonance spin-echo to detect the occurrence of proton resonances by affecting the zero-field echo signal from the quadrupole system. The double resonance imaging method offers the advantages of higher spatial resolution and straightforward image reconstruction for powder samples compared with rotating-frame and Zeeman-perturbated nuclear quadrupole resonance encoding techniques.  相似文献   

12.
New NMR broadband inversion pulses that compensate both for resonance offset and radiofrequency (RF) inhomogeneity are described. The approach described is a straightforward computer optimization of an initial digitized waveform generated from either a constant-amplitude frequency sweep or from an existing composite inversion pulse. Problems with convergence to local minima are alleviated by the way the optimization is carried out. For a given duration and maximum allowable RF field strength B1 (but not necessarily given RMS power deposition), the resultant broadband inversion pulse (BIP) shows superior inversion compared to inversion pulses obtained from previous methods, including adiabatic inversion pulses. Any existing BIP can be systematically elaborated to build up longer inversion pulses that perform over larger and larger bandwidths. The resulting pulse need not be adiabatic throughout its duration or across the entire operational bandwidth.  相似文献   

13.
In skeletal musculature intramyocellular (IMCL) and extramyocellular lipids (EMCL) are stored in compartments of different geometry and experience different magnetic field strengths due to geometrical susceptibility effects. The effect is strong enough to---at least partly---separate IMCL and EMCL contributions in (1)H MR spectroscopy, despite IMCL and EMCL consisting of the same substances. The assessment of intramyocellular lipid stores in skeletal musculature by (1)H MR spectroscopy plays an important role for studying physiological and pathological aspects of lipid metabolism. Therefore, a method using mathematical tools of Fourier analysis is developed to obtain the magnetic field distribution (MFD) from the measured spectra by deconvolution. A reference lipid spectrum is required which was recorded in tibial yellow bone marrow. It is shown that the separation of IMCL contributions can be performed more precisely---compared to other methods---based on the MFD. Examples of deconvolution in model systems elucidate the principle. Applications of the proposed approach on in vivo examinations in m. soleus and m. tibialis anterior are presented. Fitting the IMCL part of the MFD by a Gaussian lineshape with a linewidth kept fixed with respect to the linewidth of creatine and with the assumption of a smooth but not necessarily symmetrical shape for the EMCL part, the only free fit parameter, the amplitude of the IMCL part, is definite and subtraction leads to the EMCL part in the MFD. This procedure is especially justified for the soleus muscle showing a severely asymmetrical distribution which might lead to a marked overestimation of IMCL using common line fitting procedures.  相似文献   

14.
The standard Fast Spin Echo sequence used in MR imaging relies on the CPMG condition. A consequence of this condition is that only one component of the transverse magnetization can be measured. To counter this, some phase modulation schemes (XY, MLEV.) for the pulse train have been proposed, but they are useful only over a very restricted range, close to pi, of the refocusing pulse rotation angle. Some other solutions not relying on phase modulation have also been suggested, but they destroy one half the available signal. Revisiting the phase modulation approach, J. Murdoch ("Second SMR Scientific Meeting," p. 1145, 1994) suggested that a quadratic phase modulation could generate a train of classical echoes. We show here that indeed a quadratic phase modulation has a very suitable property: after an adequate change of frame, the dynamic of the system composed of all the protons situated in one pixel can be seen as stationary. If the parameter of the quadratic phase modulation is well chosen, it is then possible to put the dynamic system in a combination of two suitable states and obtain a signal identical to the signal of a classical spin echo, at least for nutation of the refocusing pulse higher than, approximately, two radians.  相似文献   

15.
The practicability of using Overhauser enhancement of saline in interventional MRI was investigated. Saline was used as a means of marking the path taken by a fluid-filled cavity, similar to that formed by a needle, catheter, or cannula during interventional MRI procedures. A prototype device was designed and constructed for saturation and propulsion of 0.6 ml of doped liquid. The pertinent Overhauser parameters, such as the obtainable enhancement factor, were measured. Signal enhancement in excess of 10 was demonstrated in practice by acquiring images showing an enhancement of fluid in a catheter tube.  相似文献   

16.
A prototype 2.5-mm (1)H high-resolution probe for an 18.8-T (800 MHz) nuclear magnetic resonance spectrometer has been designed, together with a dedicated amplifier capable of delivering up to 1 kW of power. This probe permits a 90 degrees pulse length of 2 mus to be achieved at 300 W, corresponding to an excitation bandwidth of +/-125 kHz. Probe performances were tested on samples commonly used for this purpose as well as on protein and paramagnetic model compound samples. It is shown that this probe is useful for a wide range of applications at high magnetic field, especially in the study of systems characterized by very broad and far-shifted resonances and in experiments that require high-power radiofrequency irradiation.  相似文献   

17.
This paper introduces generalized diffusion models for the transport of particles in scattering media with nonscattering inclusions. Classical diffusion is known as a good approximation of transport only in scattering media. Based on asymptotic expansions and the coupling of transport and diffusion models, generalized diffusion equations with nonlocal interface conditions are proposed which offer a computationally cheap, yet accurate, alternative to solving the full phase-space transport equations. The paper shows which computational model should be used depending on the size and shape of the nonscattering inclusions in the simplified setting of two space dimensions. An important application is the treatment of clear layers in near-infrared (NIR) spectroscopy, an imaging technique based on the propagation of NIR photons in human tissues.  相似文献   

18.
19.
Pulsed-field gradient nuclear magnetic resonance (PFG-NMR) is a well-established method for the determination of translational diffusion coefficients. Recently, this method has found applicability in the combinatorial arena with the introduction of affinity NMR for characterizing protein/ligand interactions. Although affinity NMR has been reported to be an effective method for the identification of active compounds in a complex mixture, there are limitations of this method. We have developed a simple mathematical model to predict optimum concentration ratios of the ligand and protein in order to observe maximum changes in the ligand diffusion coefficient upon protein binding. The ligand/protein systems of L-tryptophan and ibuprofen binding to human serum albumin were chosen to demonstrate the usefulness of this model. However, even when the conditions of the mathematical model are satisfied, the spectral background arising from the protein in proton-detected experiments can be problematic. To this end, we have employed spectral subtraction of the protein spectrum to yield ligand diffusion coefficients that are in agreement with those predicted by simulation.  相似文献   

20.
In this paper we design a class of numerical schemes that are higher-order extensions of the weighted essentially non-oscillatory (WENO) schemes of G.-S. Jiang and C.-W. Shu (1996) and X.-D. Liu, S. Osher, and T. Chan (1994). Used by themselves, the schemes may not always be monotonicity preserving but coupled with the monotonicity preserving bounds of A. Suresh and H. T. Huynh (1997) they perform very well. The resulting monotonicity preserving weighted essentially non-oscillatory (MPWENO) schemes have high phase accuracy and high order of accuracy. The higher-order members of this family are almost spectrally accurate for smooth problems. Nevertheless, they, have robust shock capturing ability. The schemes are stable under normal CFL numbers. They are also efficient and do not have a computational complexity that is substantially greater than that of the lower-order members of this same family of schemes. The higher accuracy that these schemes offer coupled with their relatively low computational complexity makes them viable competitors to lower-order schemes, such as the older total variation diminishing schemes, for problems containing both discontinuities and rich smooth region structure. We describe the MPWENO schemes here as well as show their ability to reach their designed accuracies for smooth flow. We also examine the role of steepening algorithms such as the artificial compression method in the design of very high order schemes. Several test problems in one and two dimensions are presented. For multidimensional problems where the flow is not aligned with any of the grid directions it is shown that the present schemes have a substantial advantage over lower-order schemes. It is argued that the methods designed here have great utility for direct numerical simulations and large eddy simulations of compressible turbulence. The methodology developed here is applicable to other hyperbolic systems, which is demonstrated by showing that the MPWENO schemes also work very well on magnetohydrodynamical test problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号