首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Most antigenic sites of proteins, known as discontinuous epitopes, are made up of residues on different loops that are brought together by the folding of the polypeptide chain. The individual loops are sometimes able, on their own, to bind to the antibody and they are then known as continuous epitopes. The binding sites of antibodies, known as paratopes, are built up from residues on six hypervariable loops known as complementarity determining regions (CDRs). Peptides corresponding to individual CDR loops are often able to bind the antigen and such peptides may be viewed as continuous paratopes. Using random combinatorial peptide libraries, it is possible to obtain peptides that bind to an antiprotein antibody without showing any sequence similarity with any part of the protein. Such epitope mimics are called mimotopes provided they are able also to elicit antibodies that react with the original antigen. The binding activity of mimotopes may partly be due to the phenomenon of hydropathic complementarity between epitope and paratope peptides. Although these concepts are vague in their structural connotation, they are useful for describing the immunological activity of linear peptides.  相似文献   

2.
Neutralizing antibodies often recognize conformational, discontinuous epitopes. Linear peptides mimicking such conformational epitopes can be selected from phage display peptide libraries by screening with the respective antibodies. However, it is difficult to localize these "mimotopes" within the three-dimensional (3D) structures of the target proteins. Knowledge of conformational epitopes of neutralizing antibodies would help to design antigens able to elicit protective immune responses. Therefore, we provide here a software that allows to localize linear peptide sequences within 3D structures of proteins. The 3D-Epitope-Explorer (3DEX) software allows to map conformational epitopes in 3D protein structures based on an algorithm that takes into account the physicochemical neighborhood of C(alpha)- or C(beta)-atoms of individual amino acids. A given amino acid of a peptide sequence is localized within the protein and the software searches within predefined distances for the amino acids neighboring that amino acid in the peptide. Surface exposure of the amino acids can also be taken into consideration. The procedure is then repeated for the remaining amino acids of the peptide. The introduction of a joker function allows to map peptide mimotopes, which do not necessarily have 100% sequence homology to the protein. Using this software we were able to localize mimotopes selected from phage displayed peptide libraries with polyclonal antibodies from HIV-positive patient plasma within the 3D structure of gp120, the exterior glycoprotein of HIV-1. We also analyzed two recently published peptide sequences corresponding to known conformational epitopes to further confirm the integrity of 3DEX.  相似文献   

3.
This review deals with short peptides (up to 50 amino acids) as biomimetic active recognition elements in sensing systems. Peptide-based sensors have been developed in recent years according to different strategies. Synthetic peptides have been designed on the basis of known interactions between single or a few amino acids and targets, with attention being paid to the presence of peptide motifs known to allow intermolecular self-organization of the sensing peptides over the sensor surface. Sensitive and sophisticated sensors have been obtained in this way, but the use of designed peptides is limited by severe difficulties in their in silico design. Short peptides from random phage display have been selected in a random way from large, unfocussed, and often preexisting and commercially available phage display libraries, with no design elements. Such peptides often perform better than antibodies, but they are difficult to select when the target is a small molecule because of the need to immobilize it with considerable modifications of its structure. Artificial, miniaturized receptors have been obtained from the reduction of the known sequence of a natural receptor down to a synthesizable and yet stable one. Alternatively, binding sites have been created over a designed, stable peptide scaffold. Short peptides have also been used as active elements for the detection of their own natural receptors: pathogenic bacteria have been detected with antimicrobial and cell-penetrating peptides, but key challenges such as detection of bacteria in real samples, improved sensitivity, and improved selectivity have to be faced. Peptide substrates have been conjugated to fluorescent quantum dots to obtain disposable sensors for protease activity with high sensitivity. Ferrocene–peptide conjugates have been used for electrochemical sensing of protease activity.  相似文献   

4.
Proteins recognized by antibodies from patients with autoimmune diseases have been intensively studied over the two past decades since cDNAs encoding autoantigens have become available. Identity of many of them has been defined, and specific structural motifs or post-translational modifications, which may be important to explain the generation of such antibodies during the autoimmune process, have been pointed out. Immunological analysis of sera from autoimmune patients with recombinant fragments and with short peptides has revealed the presence of dominant epitopes along proteins; some of them are targeted by antibodies from patients with specific diseases or disease subsets. Innovative technologies such as peptide arrays and biosensors as well as the exploitation of large peptides libraries have recently open up new perspectives. Peptides bearing natural modifications, peptide analogues, as well as mimotopes of protein or non-protein antigens (DNA, RNA, sugar) have been developed and might advantageously replace native antigens in routine immunoassays. Although numerous conformational epitopes have not yet been identified, and cannot be identified by the approaches classically used in epitope mapping studies, such peptides and peptide analogues may represent efficient probes to detect the presence of circulating autoantibodies in the serum of autoimmune patients and help for establishing specific and sensitive early diagnostic tests. They may also lead to the design of high-affinity ligands for purifying autoantibodies. These different aspects are discussed and epitope mapping studies of a number of autoantigens (e.g. histones, sn and hnRNP proteins and Ro proteins) are summarized.  相似文献   

5.
Mycotoxins, the small size secondary metabolites of fungi, have posed a threat to the safety of medicine, food and public health. Therefore, it is essential to create sensitive and effective determination of mycotoxins. Based on the special affinity between antibody and antigen, immunoassay has been proved to be a powerful technology for the detection of small analytes. However, the tedious preparation and instability of conventional antibodies restrict its application on easy and fast mycotoxins detection. By virtue of simplicity, ease of use, and lower cost, phage display library provides novel choices for antibodies or hapten conjugates, and lead random peptide or recombinant antibody to becoming the promising and environmental friendly immune-reagents in the next generation of immunoassays. This review briefly describes the latest developments on mycotoxins detection using M13 phage display, mainly focusing on the recent applications of phage display technology employed in mycotoxins detection, including the introduction of phage and phage display, the types of phage displayed peptide/recombinant antibody library, random peptides/recombinant antibodies-based immunoassays, as well as simultaneous determination of multiple mycotoxins.  相似文献   

6.
Many conformational epitopes cannot be mapped by the use of a phage display approach due to the lack of amino acid similarity with the selected peptides. Exploring the potential of the method, we selected mimotopes of the discontinuous, highly conformational epitope of scorpion neurotoxin Cn2, whose 3D structure is known, using its generic neutralizing monoclonal antibody BCF2. With an exhaustive selection procedure, we isolated from a 12-mer phage library a large collection of mimotopes that reproduce the antigenic and immunogenic specificity of the Cn2-epitope. The selected peptides presented three sequence motifs, the most abundant of which, RD(N)XXGF, appeared in 15 different sequence contexts displayed by 97 out of 206 clones. In the most reactive mimotope, displayed by 24 (25%) clones, the motif was flanked by two Cys residues allowing the adoption of a cyclic conformation. Motifs QL(H,M)L(M) and (S/T)WHLP were selected with less efficiency. Comparison of the motifs with the primary and three-dimensional structure of Cn2 as well as with a model of the Cn2-BCF2(Fv) complex suggests that RD(N)XXGF, which does not share sequence similarity with the epitope, mimics its central structural element, turn 7-11, by using an alternative amino acid combination nevertheless keeping the nature of its interactions with BCF2. The QL(H,M)L(M) is assumed to mimic the hydrophobic part of the epitope. The principles of the conformational mimicry by phage-displayed peptides are discussed.  相似文献   

7.
For effective screening by biopanning, we propose a new affinity screening method utilizing protein-coupled liposomes (proteoliposomes) as adsorbents. With multilamellar vesicles (MLVs) composed of dipalmitoylphosphatidylcholine (DPPC): dicetylphosphate (DCP) = 10: 1 (molar ratio), adsorption of nonspecific phage VCSM13 to the liposomes without any blocking was comparable to that on polystyrene tube wall coated with blocking protein. Phages displaying octapeptides specific to an anti-peptide antibody against a peptide antigen (FVNQHLCK) were screened from an octapeptide-displayed phage library by biopanning utilizing liposomes coupled with the antibody (AB-MLVs) or a conventional immunotube coated with the antibody (AB-tube). After four rounds of biopanning, all selected phages displayed homological peptides to the antigen peptide by use of AB-MLVs, while only 15% of the selected phages displayed homological peptides in the conventional biopanning. The octapeptide selected by AB-MLVs against the anti-peptide antibody showed comparable binding affinity, which were determined by the competitive ELISA and an immunoaffinity chromatography, to that of the peptide antigen. Thus, protein-coupled liposomes are useful as adsorbents for screening from combinatorial phage libraries.  相似文献   

8.
Efficient and site-specific modification of native peptides and proteins is desirable for synthesizing antibody-drug conjugates as well as for constructing chemically modified peptide libraries using genetically encoded platforms such as phage display. In particular, there is much interest in efficient multicyclization of native peptides due to the appeals of multicyclic peptides as therapeutics. However, conventional approaches for multicyclic peptide synthesis require orthogonal protecting groups or non-proteinogenic clickable handles. Herein, we report a cysteine-directed proximity-driven strategy for the constructing bicyclic peptides from simple natural peptide precursors. This linear to bicycle transformation initiates with rapid cysteine labeling, which then triggers proximity-driven amine-selective cyclization. This bicyclization proceeds rapidly under physiologic conditions, yielding bicyclic peptides with a Cys-Lys-Cys, Lys-Cys-Lys or N-terminus-Cys-Cys stapling pattern. We demonstrate the utility and power of this strategy by constructing bicyclic peptides fused to proteins as well as to the M13 phage, paving the way to phage display of novel bicyclic peptide libraries.  相似文献   

9.
Ligands selected from phage-displayed random peptide libraries tend to be directed to biologically relevant sites on the surface of the target protein. Consequently, peptides derived from library screenings often modulate the target protein's activity in vitro and in vivo and can be used as lead compounds in drug design and as alternatives to antibodies for target validation in both genomics and drug discovery. This review discusses the use of phage display to identify membrane receptor modulators with agonistic or antagonistic activities. Because isolating or producing recombinant membrane proteins for use as target molecules in library screening is often impossible, innovative selection strategies such as panning against whole cells or tissues, recombinant receptor ectodomains, or neutralizing antibodies to endogenous binding partners were devised. Prominent examples from a two-decade history of peptide phage display will be presented, focusing on the design of affinity selection experiments, methods for improving the initial hits, and applications of the identified peptides.  相似文献   

10.
Phage display libraries offer a strategy to isolate peptide ligands to target proteins and to define potential interaction sites between proteins. Recent studies have indicated a novel utility for phage display in that bacteriophage engineered to express peptide ligands to specific cell surface receptors are internalized by mammalian cells. Thus, reporter genes such as green fluorescent protein and lacZ harbored in the phage genome can be delivered to mammalian cells using targeting peptides displayed on the surface of phage. There is also the possibility to generate novel types of peptide libraries expressed intracellularly using a phage capable of inducing expression of its coding genes in human cells.  相似文献   

11.
Combinatorial chemistry and biology have become popular methods for the identification of bio-active molecules in drug discovery. A widely used technique in combinatorial biology is "phage display", by which peptides, antibody fragments and enzymes are displayed on the surface of bacteriophages, and can be selected by simple procedures of biopanning. The construction of phage libraries of peptides or antibody fragments provides a huge source of ligands and bio-active molecules that can be isolated from the library without laborious studies on antigen characteristics and prediction of ligand structure. This "irrational" approach for the construction of new drugs is extremely rapid and is now used by thousands of laboratories world-wide. The bottleneck in this procedure is the availability of large reliable libraries that can be used repeatedly over the years without loss of ligand expression and diversity. Construction of personalized libraries is therefore important for public and private laboratories engaged in the isolation of specific molecules for therapeutic or diagnostic use. Here we report the general strategies for constructing large phage peptide and antibody libraries, based on the experience of researchers who built the world's most widely used libraries. Particular attention is paid to advanced strategies for the construction, preservation and panning.  相似文献   

12.
Genetic engineering allows modification of bacterial and bacteriophage genes, which code for surface proteins, enabling display of random peptides on the surface of these microbial vectors. Biologic peptide libraries thus formed are used for high-throughput screening of clones bearing peptides with high affinity for target proteins. There are reports of many successful affinity selections performed with phage display libraries and substantially fewer cases describing the use of bacterial display systems. In theory, bacterial display has some advantages over phage display, but the two systems have never been experimentally compared. We tested both techniques in selecting streptavidin-binding peptides from two commercially available libraries. Under similar conditions, selection of phage-displayed peptides to model protein streptavidin proved convincingly better.  相似文献   

13.
Biomolecular recognition of antigens and epitopes by antibodies is a fundamental event in the initiation of immune response and plays a central role in a variety of biochemical processes. Peptide binding requires, in many cases, presentation of the peptides at interfaces, such as protein surfaces, cellular membranes, and synthetic polymer surfaces. We describe a novel molecular system in which interactions between antibodies and peptide epitopes displayed at a biomimetic membrane interface can be detected through induction of visible, rapid color transitions. The colorimetric assembly consists of a phospholipid/polydiacetylene matrix anchoring a hydrophobic peptide displaying the epitope at its N-terminus. The colorimetric transitions observed in the assembly, corresponding to perturbation of the polydiacetylene framework, are induced only upon recognition of the displayed epitope by its specific antibody present in the aqueous solution. Significantly, the color changes occur after a single mixing step, without further chemical reactions or enzymatic processing. The new molecular system could be utilized for studying antigen-antibody interactions and peptide-protein recognition, epitope mapping, and rapid screening of biological and chemical libraries.  相似文献   

14.
Affinity selection of peptides displayed on phage particles was used as the basis for mapping molecular contacts between small molecule ligands and their protein targets. Analysis of the crystal structures of complexes between proteins and small molecule ligands revealed that virtually all ligands of molecular weight 300 Da or greater have a continuous binding epitope of 5 residues or more. This observation led to the development of a technique for binding site identification which involves statistical analysis of an affinity-selected set of peptides obtained by screening of libraries of random, phage-displayed peptides against small molecules attached to solid surfaces. A random sample of the selected peptides is sequenced and used as input for a similarity scanning program which calculates cumulative similarity scores along the length of the putative receptor. Regions of the protein sequence exhibiting the highest similarity with the selected peptides proved to have a high probability of being involved in ligand binding. This technique has been employed successfully to map the contact residues in multiple known targets of the anticancer drugs paclitaxel (Taxol), docetaxel (Taxotere) and 2-methoxyestradiol and the glycosaminoglycan hyaluronan, and to identify a novel paclitaxel receptor [1]. These data corroborate the observation that the binding properties of peptides displayed on the surface of phage particles can mimic the binding properties of peptides in naturally occurring proteins. It follows directly that structural context is relatively unimportant for determining the binding properties of these disordered peptides. This technique represents a novel, rapid, high resolution method for identifying potential ligand binding sites in the absence of three-dimensional information and has the potential to greatly enhance the speed of development of novel small molecule pharmaceuticals.  相似文献   

15.
Antigen recognition by antibodies or ligand-receptor interactions involve small areas of the molecule named epitopes that are normally conformational in nature. The availability of combinatorial peptide libraries has provided a powerful tool for selecting novel sequences which mimic conformational epitopes (mimotopes) either structurally and/or immunologically. These mimotopes can be particularly useful in a number of situations, including: the development of vaccines against tumors, infectious diseases or allergic conditions; the design of molecules which can act as agonists or antagonists of various biologically-important molecules; and for the development of diagnostic assays. This article reviews the authors work on the application of combinatorial peptide libraries to identify mimotopes of protective B-cell epitopes from various pathogens, and the search for molecules able to block the biological activities of TNF-alpha, a cytokine which plays a key role in inflammation.  相似文献   

16.
Databases and computational tools for mimotopes have been an important part of phage display study. Five special databases and eighteen algorithms, programs and web servers and their applications are reviewed in this paper. Although these bioinformatics resources have been widely used to exclude target-unrelated peptides, characterize small molecules-protein interactions and map protein-protein interactions, a lot of problems are still waiting to be solved. With the improvement of these tools, they are expected to serve the phage display community better.  相似文献   

17.
Macrocyclic peptides are predominantly peptide structures bearing one or more rings and spanning multiple amino acid residues. Macrocyclization has become a common approach for improving the pharmacological properties and bioactivity of peptides. A variety of ribosomal-derived and non-ribosomal synthesized cyclization approaches have been established. The biosynthesis of backbone macrocyclic peptides using seven new emerging methodologies will be discussed with regard to the features and strengths of each platform rather than medicinal chemistry tools. The mRNA display variant, known as the random nonstandard peptide integrated discovery (RaPID) platform, utilizes flexible in vitro translation (FIT) to access macrocyclic peptides containing nonproteinogenic amino acids (NAAs). As a new discovery approach, the ribosomally synthesized and post-translationally modified peptides (RiPPs) method involves the combination of ribosomal synthesis and the phage screening platform together with macrocyclization chemistries to generate libraries of macrocyclic peptides. Meanwhile, the split-intein circular ligation of peptides and proteins (SICLOPPS) approach relies on the in vivo production of macrocyclic peptides. In vitro and in vivo peptide library screening is discussed as an advanced strategy for cyclic peptide selection. Specifically, biosynthetic bicyclic peptides are highlighted as versatile and attractive modalities. Bicyclic peptides represent another type of promising therapeutics that allow for building blocks with a heterotrimeric conjugate to address intractable challenges and enable multimer complexes via linkers. Additionally, we discuss the cell-free chemoenzymatic synthesis of macrocyclic peptides with a non-ribosomal catalase known as the non-ribosomal synthetase (NRPS) and chemo-enzymatic approach, with recombinant thioesterase (TE) domains. Novel insights into the use of peptide library tools, activity-based two-hybrid screening, structure diversification, inclusion of NAAs, combinatorial libraries, expanding the toolbox for macrocyclic peptides, bicyclic peptides, chemoenzymatic strategies, and future perspectives are presented. This review highlights the broad spectrum of strategy classes, novel platforms, structure diversity, chemical space, and functionalities of macrocyclic peptides enabled by emerging biosynthetic platforms to achieve bioactivity and for therapeutic purposes.  相似文献   

18.
Bicyclic peptides generated through directed evolution by using phage display offer an attractive ligand format for the development of therapeutics. Being nearly 100‐fold smaller than antibodies, they promise advantages such as access to chemical synthesis, efficient diffusion into tissues, and needle‐free application. However, unlike antibodies, they do not have a folded structure in solution and thus bind less well. We developed bicyclic peptides with hydrophilic chemical structures at their center to promote noncovalent intramolecular interactions, thereby stabilizing the peptide conformation. The sequences of the peptides isolated by phage display from large combinatorial libraries were strongly influenced by the type of small molecule used in the screen, thus suggesting that the peptides fold around the small molecules. X‐ray structure analysis revealed that the small molecules indeed formed hydrogen bonds with the peptides. These noncovalent interactions stabilize the peptide–protein complexes and contribute to the high binding affinity.  相似文献   

19.
Introduction   Affinity chromatography is of great interest in pharmaceutical industry as it is simple,fast and is of a high efficiency to purify proteins from a complicated mixture to homogenousones in a single step. The most common affinity ligands are monoclonal antibodies,smallmolecules such as biotin and those specific to the bio-function of the protein of interest,suchas substrates and inhibitors. Although m Ab is less limited by the bioactivity of proteins,itspreparation is a complex …  相似文献   

20.
Epitope prediction based on random peptide library screening has become a focus as a promising method in immunoinformatics research. Some novel software and web-based servers have been proposed in recent years and have succeeded in given test cases. However, since the number of available mimotopes with the relevant structure of template-target complex is limited, a systematic evaluation of these methods is still absent. In this study, a new benchmark dataset was defined. Using this benchmark dataset and a representative dataset, five examples of the most popular epitope prediction software products which are based on random peptide library screening have been evaluated. Using the benchmark dataset, in no method did performance exceed a 0.42 precision and 0.37 sensitivity, and the MCC scores suggest that the epitope prediction results of these software programs are greater than random prediction about 0.09-0.13; while using the representative dataset, most of the values of these performance measures are slightly improved, but the overall performance is still not satisfactory. Many test cases in the benchmark dataset cannot be applied to these pieces of software due to software limitations. Moreover chances are that these software products are overfitted to the small dataset and will fail in other cases. Therefore finding the correlation between mimotopes and genuine epitope residues is still far from resolved and much larger dataset for mimotope-based epitope prediction is desirable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号