首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
We have developed a phage-display method for high-throughput mining of bacterial gene clusters encoding the natural-product biosynthetic enzymes, polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs). This method uses the phosphopantetheinyl transferase activity of Sfp to specifically biotinylate NRPS and PKS carrier-protein domains expressed from a library of random genome fragments fused to a gene encoding a phage coat protein. Subsequently, the biotinylated phages are enriched through selection on streptavidin-coated plates. Using this method, we isolated phage clones from the multiple NRPS and PKS gene clusters encoded in the genomes of Bacillus subtilis and Myxococcus xanthus. Due to the rapid and unambiguous identification of carrier domains, this method will provide an efficient tool for high-throughput cloning of NRPS and PKS gene clusters from many individual bacterial genomes and multigenome environmental DNA.  相似文献   

2.
Genetic engineering allows modification of bacterial and bacteriophage genes, which code for surface proteins, enabling display of random peptides on the surface of these microbial vectors. Biologic peptide libraries thus formed are used for high-throughput screening of clones bearing peptides with high affinity for target proteins. There are reports of many successful affinity selections performed with phage display libraries and substantially fewer cases describing the use of bacterial display systems. In theory, bacterial display has some advantages over phage display, but the two systems have never been experimentally compared. We tested both techniques in selecting streptavidin-binding peptides from two commercially available libraries. Under similar conditions, selection of phage-displayed peptides to model protein streptavidin proved convincingly better.  相似文献   

3.
Phage surface display of cDNA libraries facilitates cloning, expression and rapid selection of functional gene products physically linked to their genetic information through gene product-ligand interactions. Efficient screening technologies based on selective enrichment of clones expressing desired gene products allows, within a short time, the isolation of all ligand-specific clones that are present in a library. Manual identification of clones by restriction analysis and random sequencing is unlike to be successful for the isolation of gene products derived from rare mRNA species resulting from selection of the libraries using polyvalent ligands like serum from patients. Here we describe rapid handling of large numbers of individual clones selected from molecular libraries displayed on phage surface using the power of robotics-based high throughput screening. The potential of the combination of cDNA-phage surface display, with selection for specific interactions by functional screening and robotic technology is illustrated by the isolation of more sequences potentially encoding IgE-binding proteins than postulated from Western blot analyses using extracts derived from raw material of complex allergenic sources. The subsequent application of functional enrichment and robotics-based screening will facilitate the rapid generation of information about the repertoire of protein structures involved in allergic diseases.  相似文献   

4.
Selections from phage-displayed combinatorial peptide libraries are an effective strategy for identifying peptide ligands to target proteins. Existing protocols for constructing phage-displayed libraries utilize either ligation into double-stranded phage DNA or Kunkel mutagenesis with single-stranded phagemid DNA. Although the Kunkel approach rapidly provides library sizes of up to 10(11), as many as 20% of the phagemids may be non-recombinant. With several modifications to current Kunkel protocols, we have generated peptide libraries with sizes of up to 10(11) clones and recombination frequencies approaching 100%. The production of phage libraries, as opposed to phagemid libraries, simplifies selection experiments by eliminating the need for helper phage. Our approach relies upon the presence of an amber stop codon in the coding region of gene III of bacteriophage M13. Oligonucleotides containing randomized stretches of DNA are annealed to the phage genome such that the randomized region forms a heteroduplex with the stop codon. The oligonucleotide is then enzymatically extended to generate covalently-closed, circular DNA, which is electroporated into a non-suppressor strain of Escherichia coli. If the amber stop codon is present in the DNA molecule, protein III is not synthesized and the phage cannot propagate itself. This method is customizable for the display of either random or focused peptide libraries. To date, we have constructed 22 different libraries ranging from 8-20 amino acids in length, utilizing complete or reduced codon sets.  相似文献   

5.
BACKGROUND: The identification of cellular targets has traditionally been the starting point for natural product mode of action studies and has led to the understanding of many biological processes. Conventional experimental approaches have depended on cell-based screening and/or affinity chromatography. Although both of these techniques aid in the discovery of protein cellular targets, a method that couples protein identification with gene isolation would be extremely valuable. RESULTS: A procedure for the direct cloning of cellular proteins, based on their affinity for natural products, using cDNA phage display has been developed. The technique is referred to as display cloning because it involves the cloning of proteins displayed on the surface of a bacteriophage particle. The approach has been established by isolating a full-length gene clone of FKBP12 (FK506-binding protein) from a human brain cDNA library using a biotinylated FK506 probe molecule. During the affinity selection, the FKBP12 gene emerged as the dominant library member and was the only sequence identified after the second round of selection. CONCLUSIONS: The development of display cloning greatly facilitates the investigation of ligand-receptor interaction biology and natural product mode of action studies. This procedure utilizes heterologous protein display on infectious phage, which allows the amplification and repeated selection of putative sequences, leading to unambiguous target identification. In addition, the direct connection of a functional protein to its gene sequence eliminates the subsequent cloning step required with tissue homogenate or cell lysate affinity methods, allowing direct isolation of an expressible gene sequence.  相似文献   

6.
It has become a major goal of molecular biologists, biochemists, and immunologists to be able to modulate the structure of proteins, in order to increase their antigenicity, alter their biological properties and/or explore their function. Based on the concept of bacterial phage display, by which proteins are being selected and analyzed in conjunction with their genetic information, eukaryotic systems have been investigated for their use in generating biomolecular diversity. The advantage of posttranslational modification and the possible harbouring of structural complex proteins has lead scientists to include eukaryotic systems in the wide field of molecular design. The ideal expression vectors for surface display are eukaryotic viruses, that allow large gene insertions, efficiently present foreign proteins on the particle surface, are easy to propagate and, if possible, not pathogenic to humans. By inserting peptides into a native virus coat protein or by expressing foreign proteins as coat protein fusion proteins or linked to specific anchor domains it becomes possible to display polypeptides of interest on the surface of replicating particles. A variety of different strategies are currently under investigation in order to utilize the baculovirus insect cell expression system for efficient display on the surface of virus particles as well as on the surface of virally infected insect cells. Increasing the transfection efficiency, optimizing cloning procedures, and establishing applicable selection methods have lead to the development of a powerful tool for drug screening and ligand screening.  相似文献   

7.
Substrate identification is the key to defining molecular pathways or cellular processes regulated by proteases. Although phage display with random peptide libraries has been used to analyze substrate specificity of proteases, it is difficult to deduce endogenous substrates from mapped peptide motifs. Phage display with conventional cDNA libraries identifies high percentage of non-open reading frame (non-ORF) clones, which encode short unnatural peptides, owing to uncontrollable reading frames of cellular proteins. We recently developed ORF phage display to identify endogenous proteins with specific binding or functional activity with minimal reading frame problem. Here we used calpain 2 as a protease to demonstrate that ORF phage display is capable of identifying endogenous substrates and showed its advantage to re-verify and characterize the identified substrates without requiring pure substrate proteins. An ORF phage display cDNA library with C-terminal biotin was bound to immobilized streptavidin and released by cleavage with calpain 2. After three rounds of phage selection, eleven substrates were identified, including calpastatin of endogenous calpain inhibitor. These results suggest that ORF phage display is a valuable technology to identify endogenous substrates for proteases.  相似文献   

8.
With the human genome project approaching completion, there is a growing interest in functional analysis of gene products. The characterization of large numbers of proteins, their expression patterns and in vivo localisations, demands the use of automated technology that maintains a logistic link to the encoding genes. As a complementary approach, phage display is used for recombinant protein expression and the selection of interacting (binding) molecules. Cloning of libraries in filamentous bacteriophage or phage mid vectors provides a physical link between the expressed protein and its encoding DNA sequence. High-throughput technology for automated library handling and phage display selection has been developed using picking-spotting robots and a module for pin-based magnetic particle handling. This system enables simultaneous interaction screening of libraries and the selection of binders to different target molecules at high throughput. Target molecules are either displayed on high-density filter membranes (protein filters) or tag-bound to magnetic particles and can be handled as native ligands. Binding activity is confirmed by magnetic particle ELISA in the microtitre format. The whole procedure from immobilisation of target molecules to confirmed clones of binders is automatable. Using this technology, we have selected human scFv antibody fragments against expression products of human cDNA libraries.  相似文献   

9.
Using plant mini-Ti cosmid pEND4K, the cosmid genomic library of Sesbania rostratawas constructed. Sizes of plant DNA inserts in clones were 25- 33 kb. The restrictionmapping showed that different recombinant involved various types of plant DNA insert. 4clones containing leghemoglobin gene sequence of S. rostrata were obtained by in situ hy-bridization of colonies. The cloning of leghemoglobin gene sequence has been confirmedby plasmid DNA dot hybridization and Southern blot hybridization.  相似文献   

10.
The cloning of genes based on protein function has become a powerful tool for protein discovery and should play an important role in proteomics in general. We have recently reported a technique for the functional identification of protein targets by combining traditional affinity chromatography with cDNA phage display. This procedure, referred to as display cloning, directly couples biologically active natural products to the gene of their protein cellular target. We now report the cloning of a human gene, the domain of F1 ATP synthase, using a synthetic scaffold molecule which serves as a prototype for a diverse chemical library. The ability to select genes from cDNA libraries using probes from combinatorial libraries would greatly increase the number of small molecule/protein interactions that can be identified. This method might prove valuable in furthering our understanding of biology and its application toward drug development.  相似文献   

11.
Proteases are key regulators of many physiological and pathological processes [1,2], and are recognized as important and tractable drug candidates. Consequently, knowledge of protease substrate recognition and specificity promotes identification of biologically relevant substrates, helps elucidating a protease's biological function, and the design of specific inhibitors. Traditional methods for establishing substrate recognition profiles involve the identification of the scissile bond within a given protein substrate by proteomic methods such as Edman degradation. Then, synthetic peptide variants of this sequence can be screened in an iterative fashion to arrive at more optimized substrates. Even though it can be fruitful, this iterative strategy is biased toward the original substrate sequence and it is also tremendously cumbersome. Furthermore, it is not amenable to high throughput analysis. In 1993, Matthew & Wells presented a method for the use of monovalent "substrate phage" libraries for discovering peptide substrates for proteases, in which more than 10(7) potential substrates can be tested concurrently [3]. A library of fusion proteins was constructed containing randomized substrate sequences placed between a binding domain and the gene III coat protein of the filamentous phage, M13, which displays the fusion protein and packages the gene coding for it inside. Each fusion protein was displayed as a single copy on filamentous phagemid particles (substrate phage). This method allows one to rapidly survey the substrate recognition and specificity of individual or closely related members of proteases. Over the past decade, substrate phage screening has shown terrific utility in rapidly determining protease specificity and characterization of substrate recognition profile of proteases. In some cases, the structural insights of the catalytic domain were obtained from comparison of substrate specificity among closely related family of proteases [4-6]. The number of proteases (from various classes) characterized by this approach testifies to its power. Since the initial development of substrate phage library, different versions of the substrate phage cloning vectors have been constructed to further improve the utility of substrate phage display. This review will provide an overview of the construction of substrate phage display libraries, screening of substrate phage libraries, examples of application, summary and future directions.  相似文献   

12.
We describe a high-throughput, quantitative technology for fast identification of all different clones present in selectively enriched phage surface-displayed cDNA libraries. The strategy is based on a combination of phage display and high-density arrays. To demonstrate the utility of the method cDNAs of Aspergillus fumigatus cloned into phagemid pJuFo were expressed on the tip of filamentous M13 phage and affinity-selected on solid phase-immobilized serum IgE from allergic patients. Enriched phagemid libraries were amplified in bacteria, plated and arrayed into 384-well microtitre plates by robotic colony picking. cDNA inserts were amplified by high-throughput PCR and gridded onto high-density filter membranes. Filters were iteratively probed with randomly-sequenced inserts until all clones were identified. Eighty-one different sequences encoding IgE-binding proteins likely to cover a large part of the allergen repertoire of the mould were found. This approach represents a widely applicable method for rapid high-throughput identification of all individual cDNAs present in selectively enriched libraries.  相似文献   

13.
BACKGROUND: Filamentous bacteriophage are used as general cloning vectors as well as phage display vectors in order to study ligand-receptor interactions. Exposure to biphasic chloroform-water interface leads to specific contraction of phage, to non-infective I- or S-forms. RESULTS: Upon exposure, phage were inactivated (non-infective) at methanol, ethanol and 1-propanol concentrations inversely dependent upon alcohol hydrophobicity. Infectivity loss of phage at certain concentrations of 1-propanol or ethanol coincided with changes in the spectral properties of the f1 virion in ultraviolet fluorescence and circular dichroism studies. CONCLUSIONS: The alcohols inactivate filamentous phage by a general mechanism--solvation of coat protein--thereby disrupting the capsid in a manner quite different from the previously reported I- and S-forms. The infectivity retention of phagemid pG8H6 in 99% acetonitrile and the relatively high general solvent resistance of the phage strains studied here open up the possibility of employing phage display in non-aqueous media.  相似文献   

14.
15.
In recent years, phage display of peptides and proteins has become a very popular method in oncology, immunology, protein engineering and ligand-receptor studies among others. Antibody fragments, as Fabs or single chain Fv, have been among the first proteins to be displayed on the surface of a filamentous bacteriophage with a procedure initially described in 1990 by McCafferty et al. (Nature, 348, 552-554). From that time, molecular biology techniques have allowed the creation of large repertoires of antibody fragments from antibody V genes, bypassing hybrydoma technology and even immunisation. A large number of phage antibody libraries, from which molecules of the desired functional properties can be rapidly selected, have been built and distributed in many laboratories world-wide. Antibody fragments recovered from phage libraries generally show moderate binding strength; with different systems of biopanning binders can be obtained with dissociation constant ranged between 10-(5) to 10-(8) M. Nevertheless, antibody fragments can be furtherly modified to improve affinity or avidity, respectively by mutating crucial residues of complementarity determining regions or by increasing the number of binding sites making dimeric, trimeric or multimeric molecules. Here, we summarise the latest progress in this field, with particular reference to applications of scFv in the diagnosis and therapy of solid tumours and in the molecular mimicry of viral antigens and membrane receptors. In fact, the production of artificial protein epitopes by phage antibodies is becoming a valid system to overcome problems caused by difficult cloning and low expression of particular recombinant proteins.  相似文献   

16.
Clinical cases of type-1 hypersensitive reaction to rice (Oryza sativa) have been reported in western countries as well as in Japan. Among rice proteins, 14-16 kD globulin proteins encoded by multiple gene family have been identified as major rice allergens. In this study, a rice cDNA library was constructed using lambda UniZap vector and screened with a rat anti-16 kD globulin protein polyclonal antibody in order to isolate Korean rice allergenic cDNA clones. Five independent cDNA clones, termed RAK1-5, were obtained after second rounds of plaque assay and immunoblot analysis. These clones encoded 13-19 kD recombinant proteins upon IPTG induction, which were identified by the polyclonal antibody in immunoblot analysis. DNA sequencing analysis showed that RAK1-4 have 99% sequence homology with RA5b, and RAK5 is closely related with RA14c. This result indicated that RA5b gene is widely distributed in our cDNA library among other possible rice allergenic genes, and more study is needed to isolate heterogeneous or novel rice allergen genes.  相似文献   

17.
Filamentous phage has been extensively used to implement various aspects of phage display technology. The success of these organisms as vectors to present foreign peptides and to link them to their coding sequences is a consequence of their structural and biological characteristics. Some of these properties, however, represent a limitation when one attempts to display proteins that cannot be efficiently exported through the bacterial membrane or do not fold properly in the periplasm. Thus, the desirability of developing alternative display systems was recognised recently and led to the development of a different class of display vectors that assemble their capsid in the cytoplasm and are released via cell lysis. This review describes and compares the properties of these alternative display systems.  相似文献   

18.
Introduction CardiactroponinI(cTnI),aspecificproteinof cardiacmusclecells,showsa40%dissimilarity withskeletaltroponinI(sTnI)inaminoacidse- quence.Moreover,humancardiacTnIhas31addi- tionalresiduesonitsN-terminalend,whichare notpresentinskeletalforms,thusprovidingahigh potentialforobtainingcardiac-specificantibod- ies[1,2].Themolecularweightofthisproteinis29 kDaandtherefore,itwillbereleasedreasonably rapidlyafteracutemyocardialinfarction(AMI). CTnIoftenappearsinbloodwithinafewhoursaf- ter…  相似文献   

19.
The peptide substrate specificity of Tie-2 was probed using the phage display method in order to identify efficient substrate for high throughput screening. Two random peptide libraries, pGWX3YX4 and pGWX4YX4, were constructed, in which all twenty amino acid residues were represented at the X positions flanking the fixed tyrosine residue Y. A fusion protein of GST and the catalytic domain of human Tie-2 was used to perform the phage phosphorylation. The phosphorylated phage particles were enriched by panning over immobilized anti-phosphotyrosine antibody pY20 for a total of 5 rounds. Four phage clones (3T61, 3T68, C1-90 and D1-15) that express a peptide sequence that can be phosphorylated by the recombinant catalytic domain of human Tie-2 were identified. Synthetic peptides made according to the sequences of the 4 selected clones from the two libraries, which had widely different sequences, were active substrates of Tie-2. Kinetic analysis revealed that D1-15 had the best catalytic efficiency with a k(cat)/K(m) of 5.9x10(4) M(-1) s(-1). Three high throughput screening assay formats, dissociation-enhanced lanthanide fluoroimmunoassay (DELFIA), radioactive plate binding (RPB) and time-resolved fluorescent resonance energy transfer (TR-FRET) were developed to assess the suitability of these phage display selected peptides in screening Tie-2 inhibitors. Three out of four peptides were functional in the DELFIA assay and D1-15 was functional in the TR-FRET assay.  相似文献   

20.
Abstract— Near-ultraviolet radiation (near UV; 300–380 nm) has long been known to produce a transient reduction of the capacity of bacteria to support phage growth. The present work shows that, at high fluenœs (40–100 kJ/m2), 85% of 334-nm-induced reduction of capacity in Escherichia coli B/r requires the rel gene; that is, it results from rel -gene activity caused by the near-UV treatment. This rel -gene activity leads to (1) a bacterial growth delay and concomitantly lowered bacterial metabolism, and (2) a parallel delay in phage development, with a considerable depression of burst size. We propose that the observed effects on phage development are a consequence primarily of the lowered bacterial metabolism, but they may also result partly from a direct inhibition of phage DNA synthesis by the rel gene product, these effects together leading to the observed reduction of capacity in a rel + strain. The remaining 15% of capacity reduction, observed in a rel strain, has an unknown mechanism, but does appear to involve a delay in phage development.
At least 95% of the total capacity reduction observed in the rel + strain in the range 40–100 kJ/m2 requires the presence of 4-thiouridine, an unusual base in E. coli transfer RNA, which is presumably both the chromophore and the target for near-UV-induced capacity reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号