首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aggregation behavior of colloidal single-walled carbon nanotubes (SWNT) in dilute aqueous suspensions was investigated using a novel light scattering measurement technique. The aggregation of SWNT in three suspensions was examined: (1) nanotubes after acid treatment; (2) as-received nanotubes stabilized by a nonionic surfactant; and (3) acid-treated nanotubes with nonionic surfactant. Continuous light scattering measurements of the SWNT suspensions (probing the 38-436 nm length scale) made over two weeks showed that the nanotubes in each sample formed networks with fractal-like structures. The as-received nanotubes were stable over the measurement period, while the acid-treated nanotube suspension showed greater dispersion variability over time, yielding looser structures at large length scales and more compact structures at smaller length scales. The addition of surfactant to the acid-treated suspension significantly enhanced nanotube dispersion.  相似文献   

2.
Dispersions of multiwalled carbon nanotubes (MWNT) in polypropylene (PP) were prepared via conventional melt batch mixing and solid‐state shear pulverization. The properties and structure of each system were assessed via linear viscoelasticity, electrical conductivity, PP crystallization kinetics, dynamic mechanical analysis, scanning electron microscopy, and small angle X‐ray scattering. Increasing either the duration or the intensity of melt mixing leads to higher degrees of dispersion of MWNT in PP, although at the cost of substantial melt degradation of PP for long mixing times. Samples prepared by pulverization exhibit faster crystallization kinetics and higher mechanical stiffness than the melt blended samples, but in contrast show no measurable low frequency elastic plateau in melt rheology, and lower electrical conductivity than melt‐mixed samples. X‐ray scattering demonstrates that neither sample has uniform dispersion down to the single MWNT level. The results illustrate that subtle differences in the size and distribution of nanotube clusters lead to differences in the nanotube networks with strong impact on bulk properties. The results also highlight distinctions between conductive networks and load transfer networks and demonstrate that a complete and comparative picture of dispersion cannot be determined by simple indirect property measurements. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1426–1436, 2009  相似文献   

3.
Gigault J  Grassl B  Lespes G 《The Analyst》2012,137(4):917-923
This work demonstrates the potential of asymmetrical flow field-flow fractionation (A4F) coupled to Ultraviolet spectrometry (UV) and multi-angle light scattering (MALS) for the study of single-walled carbon nanotube (SWCNT) dispersion in aqueous solutions containing a surfactant. The results indicate that this technique is a powerful analytical tool that is able to evaluate SWCNT dispersion states in aqueous media and, more importantly, determine the presence or absence of aggregates, the numbers and sizes of different SWCNT populations and the SWCNT size distribution. Dynamic light scattering was employed to complete and demonstrate the relevance of the data that were obtained via A4F-UV-MALS. Two different anionic surfactants that are used to disperse SWCNTs were then studied. The dispersing powers of the surfactants were experimentally evaluated based on their structural organizations. This study demonstrates that surfactant concentration and sonication energy are key parameters that control the SWCNT dispersion state and SWCNT structural integrity therein.  相似文献   

4.
Strong luminescence emissions over a broad wavelength region were detected from well-dispersed carbon nanotubes in most functionalized samples, even with excitation wavelengths into the near-IR. Apparently, the better dispersion and functionalization of the nanotubes resulted in more intense luminescence emissions. These emissions may logically be attributed to the trapping of excitation energy by defect sites in the nanotube structure, which are passivated upon the appropriate functionalization of the nanotubes. Better functionalization improves not only the nanotube dispersion (thus diminishing the quenching due to intertube interactions) but also the surface passivation to make the energy trapping sites more emissive, leading to stronger luminescence emissions. Because of such high sensitivity, the visible luminescence emissions may prove valuable in the evaluation of dispersion in functionalized carbon nanotube samples and related nanocomposite materials.  相似文献   

5.
A big picture view of Raman scattering in carbon nanotubes is presented, starting from its early history and the discovery of the unique Raman spectra of carbon nanotubes, and following on to the discovery of Raman spectra at the single nanotube level and a more detailed understanding of the scattering mechanism in terms of the excitonic picture. Recent developments and an outlook to the future of the field are emphasized along with the special role that Brazilian researchers have played in the development of the field. Both the advance in our understanding of Raman scattering in 1D systems and the use of Raman scattering to advance carbon nanotube research and sample characterization are discussed.  相似文献   

6.
Arrays of polymer/SWCNT (single‐wall carbon nanotube) nanowires supported on a residual nanocomposite film are prepared by melt wetting using porous anodic aluminum oxide (AAO) as a template. The aggregation parameter of SWCNTs extracted from the analysis of their Raman radial breathing modes gives the highest value for native SWCNTs, indicating that they tend to organize into bundles giving rise to a high degree of aggregation. However, the lowest value achieved at the interface between the nanocomposite film and the nanoarray is explained considering that the forces acting during infiltration are able to disrupt the SWCNT bundles inducing nanotube dispersion. In addition, scanning the nanoarrays along the nanowires length by Raman microscopy has shown a diameter selection of SWCNTs by the AAO membrane. The results reported in this work reveal that it is possible to fabricate arrays of nanowires with homogeneous SWCNT distribution along tens of microns, optimizing nanotube dispersion.  相似文献   

7.
Resonant Raman spectroscopy and transmission electron microscopy were used to characterize the structural changes of three single-walled carbon nanotube samples processed with purification, pelletization, and surfactant-assisted dispersion. A two-stage purification process selectively removes metallic tubes as well as small-diameter ones, enriching large-diameter semiconducting tubes. Pelletizing reduces the intertube distance but greatly increases the intensity ratio of the D band to the G band. Single-walled nanotube (SWNT) bundle size decreases during ultrasonication dispersion aided by a surfactant. SWNT bundles composed of large-diameter tubes are prone to debundling.  相似文献   

8.
Suitably modified linear conjugated poly(arylene ethynylene)s are able to assist effective debundling and dispersion of crude as-prepared single-walled carbon nanotube powders in organic solvents, the dispersion of which is effected via a surface coating mechanism and, to some extent, in a size-selective fashion.  相似文献   

9.
碳纳米管(CNT)纤维因具有低密度、高强度以及高电导率等特性受到广泛关注。在湿法纺丝技术制备CNT纤维的工艺中,探究纺丝分散液和纺丝条件对CNT纤维性能的影响具有重要意义。本文研究了十二烷基硫酸钠(SDS)、十六烷基三甲基溴化铵(CTAB)、胆酸钠(SC)、牛磺脱氧胆酸钠(STDC)等表面活性剂对CNT纤维制备及性能的影响。通过拉曼光谱、紫外可见光谱、偏光显微镜、旋转流变仪、扫描电镜等方法对材料进行表征,以拉伸测试和“四探针”法对材料性能进行测试。结果表明,单壁碳纳米管(SWNTs)在表面活性剂的2(wt)%水溶液中的分散能力顺序依次为STDC> SC> CTAB> SDS;SDS或CTAB修饰的SWNTs分散液无法纺制纤维,SC和STDC修饰的SWNTs分散液具有良好的可纺性。其中以STDC作表面活性剂制备的CNT纤维性能最好,其断裂强度为160MPa,杨氏模量为12.3GPa,电导率为2300S/cm。  相似文献   

10.
We compared conductive transparent carbon nanotube coatings on glass substrates made of differently produced single-wall (SWNT), double-wall, and multiwall carbon nanotubes. The airbrushing approach and the vacuum filtration method were utilized for the fabrication of carbon nanotube films. The optoelectronic performance of the carbon nanotube film was found to strongly depend on many effects including the ratio of metallic-to-semiconducting tubes, dispersion, length, diameter, chirality, wall number, structural defects, and the properties of substrates. The electronic transportability and optical properties of the SWNT network can be significantly altered by chemical doping with thionyl chloride. Hall effect measurements revealed that all of these thin carbon nanotube films are of p-type probably due to the acid reflux-based purification and atmospheric impurities. The competition between variable-range hoping and fluctuation-assisted tunneling in the functionized carbon nanotube system could lead to a crossover behavior in the temperature dependence of the network resistance.  相似文献   

11.
Large-scale debundling of single-walled nanotubes has been demonstrated by dilution of nanotube dispersions in the solvent N-methyl-2-pyrrolidone (NMP). At high concentrations some very large (approximately 100 s of micrometers) nanotube aggregates exist that can be removed by mild centrifugation. By measurement of the absorbance before and after centrifugation as a function of concentration the relative aggregate and dispersed nanotube concentrations can be monitored. No aggregates are observed below CNT approximately 0.02 mg/mL, suggesting that this can be considered the nanotube dispersion limit in NMP. After centrifugation, the dispersions are stable against sedimentation and further aggregation for a period of weeks at least. Atomic force microscopy (AFM) studies on deposited films reveal that the bundle diameter distribution decreases dramatically as concentration is decreased. Detailed data analysis suggests the presence of an equilibrium bundle number density and that the dispersions self-arrange themselves to always remain close to the dilute/semidilute boundary. A population of individual nanotubes is always observed that increases with decreasing concentration until almost 70% of all dispersed objects are individual nanotubes at a concentration of 0.004 mg/mL. The number density of individual nanotubes peaks at a concentration of approximately 10(-2) mg/mL. Both the mass fraction and the partial concentration of individual nanotubes can also be measured and behave in similar fashion. Comparison of the number density and partial concentration also of individual nanotubes reveals that the individual nanotubes have average molar masses of approximately 700,000 g/mol. The presence of individual nanotubes in NMP dispersion was confirmed by photoluminescence spectroscopy. Concentration dependence of the photoluminescence intensity confirms that the AFM measurements reflect the diameter distributions in situ. In addition, Raman spectroscopy confirms the presence of large quantities of individual nanotubes in the deposited films. Finally, the nature of the solvent properties required for dispersion are discussed.  相似文献   

12.
A 3D single-wall carbon nanotube can be viewed as a 2D graphite sheet rolled into a 3D cylinder. In the study of dispersion relations of carbon nanotubes, the consistent force parameters for 2D graphite sheets have to be modified to include the curvature effect. The present paper reports a series of calculations of phonon dispersion relations for single-wall carbon armchair, zigzag nanotube in which the curvature effect has been properly treated. The symmetry of crystal vibration mode at the centre of Brillouin zone is analyzed based on our numeric results and the structure symmetry of the nanotubes.  相似文献   

13.
Possibility to observe coherent effects of radiation scattering in nanotube structures have been already discussed in a number of papers. In this work, the features of X-ray fluorescence from the films of aligned and random distributed nanotubes are analyzed.  相似文献   

14.
Multiwall carbon nanotube‐filled elastomers are prepared by solution blending using a sonication process. It is shown that the processing conditions have a strong effect on the composite properties especially on electrical properties, which are very sensitive to nanotube dispersion within the elastomeric matrix. The percolation threshold is seen to be shifted to a lower nanotube content than that previously reported. With regard to the unfilled elastomer, large increases in the elastic and tensile moduli are obtained with the nanotube loading, thus highlighting the potential of this type of particles as reinforcing fillers for elastomeric matrices. Raman spectroscopy under strain has been used to evaluate the strength of the polymer–filler interface. Weak interfacial interactions are deduced, but the debundling of the nanotubes and the orientational effects of the polymeric chains are observed when the composite is submitted to a uniaxial deformation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The spin-dependent transport properties of single ferrocene, cobaltocene, and nickelocene molecules attached to the sidewall of a (4,4) armchair single-walled carbon nanotube via a Ni adatom are investigated by using a self-consistent ab initio approach that combines the non-equilibrium Green's function formalism with the spin density functional theory. Our calculations show that the Ni adatom not only binds strongly to the sidewall of the nanotube, but also maintains the spin degeneracy and affects little the transmission around the Fermi level. When the Ni adatom further binds to a metallocene molecule, its density of states is modulated by that of the molecule and electron scattering takes place in the nanotube. In particular, we find that for both cobaltocene and nickelocene the transport across the nanotube becomes spin-polarized. This demonstrates that metallocene molecules and carbon nanotubes can become a promising materials platform for applications in molecular spintronics.  相似文献   

16.
Length-dependent optical effects in single-wall carbon nanotubes   总被引:1,自引:0,他引:1  
Among the novel chemical and physical attributes of single-wall carbon nanotubes (SWCNTs), the optical properties are perhaps the most compelling. Although much is known about how such characteristics depend on nanotube chirality and diameter, relatively little is known about how the optical response depends on length, the next most obvious and fundamental nanotube trait. We show here that the intrinsic optical response of single-wall carbon nanotubes exhibits a strong dependence on nanotube length, and we offer a simple explanation that relates this behavior to the localization of a bound exciton along the length of a nanotube. The results presented here suggest that, for a given volume fraction, the longest nanotubes display significantly enhanced absorption, near-infrared fluorescence, and Raman scattering, which has important practical implications for potential applications that seek to exploit the unique optical characteristics of SWCNTs.  相似文献   

17.
Highly stable single-walled carbon nanotube (SWNT) dispersions are obtained after ultrasonication in cellulose nanocrystal (CN) aqueous colloidal suspensions. Mild dispersion conditions were applied to preserve the SWNT length in order to facilitate the identification of hybrid objects. This led to a moderate dispersion of 24% of the SWNTs. Under these conditions, atomic force microscopy (AFM) and transmission electron microscopy (TEM) experiments succeeded in demonstrating the formation of hybrid particles in which CNs are aligned along the nanotube axis by a self-assembly process. These SWNT/CN dispersions are used to create multilayered thin films with the layer-by-layer method using polyallylamine hydrochloride as a polyelectrolyte. Homogeneous films from one to eight bilayers are obtained with an average bilayer thickness of 17 nm. The presence of SWNTs in each bilayer is attested to by characteristic Raman signals. It should be noted that these films exhibit a near-infrared luminescence signal due to isolated and well-separated nanotubes. Furthermore, scanning electron microscopy (SEM) suggests that the SWNT network is percolating through the film.  相似文献   

18.
Chrysotile nanotubes (ChNTs) were synthesized under hydrothermal conditions. These synthetic nanotubes crystallographically and morphologically mimic the nanofibrils of natural white asbestos but they are considerably shorter. ChNTs containing polyimide nanocomposites were prepared by a solution mixing/casting method. Oxygen and water vapor barrier of the nanocomposite films were tested and related to the amount, dispersion, and orientation of the nanotubes. The dispersion and orientation of the nanotubes were examined by transmission electron microscopy (TEM). The nanotubes were nanodispersed and oriented in the plane of the film in the nanocomposites with up to 4.5% (vol/vol) of ChNTs leading to a gradual increase of the gas barrier. The lowest gas permeability was 60% smaller than that for the pristine polyimide film. However, with the onset of nanotube micro aggregation at larger ChNTs loadings the nanotube dispersion and orientation were compromised and oxygen barrier was reduced. The efficacy of nanotubes to enhance polymer gas barrier was discussed and compared with that by nanoplatelets. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1184–1193  相似文献   

19.
两亲分子对碳纳米管的分散稳定作用   总被引:4,自引:0,他引:4  
综述了近年来国内外对碳纳米管在两亲分子水溶液中的分散作用研究, 从表面活性剂、聚合物和生物大分子三方面, 分别阐述了用非成键法对碳纳米管进行分散的不同机理. 离子型表面活性剂或聚电解质主要靠亲水基团之间的静电斥力阻止碳纳米管之间的聚集, 而非离子型表面活性剂或大分子则主要靠亲水基团所产生的空间位阻使分散体系保持稳定.  相似文献   

20.
The uniform aqueous dispersion of carbon nanotubes (CNTs) is a vital but challenging task required for their utilization in most technologies. We propose and demonstrate a technique based on forward- and side-scatter analysis on a flow cytometer to characterize the components in a dispersion of multiwalled CNTs (MWCNTs). The method simultaneously distinguishes various MWCNT components such as short and long CNTs, nanotube bundles, and particulates. It also detects the emergence of new CNT populations as a result of centrifugation. We use this method, together with classical methods such as UV and Raman spectroscopy, to observe and study the multistep MWCNT dispersion process in various surfactants (Pluronic, Triton X-100, sodium dodecyl sulfate, and cetyl trimethylammonium bromide). On the basis of the distinct scatter patterns obtained, we confirm and elaborate the surfactant-assisted unzipping mechanism of MWCNT dispersion. We also show that the ultrasonic energy spent after MWCNT unbundling and unwinding can be minimized and the process optimized for each surfactant by correct end point detection through scatter analysis. The ability to enrich nanotube population in dispersion by using the sorting mode of a flow cytometer is confirmed by electron microscopy and Raman spectroscopy. This method can thus be used for observing and enriching MWCNT components and as a complementary technique to UV spectroscopy for studying and optimizing MWCNT dispersion in surfactants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号