共查询到20条相似文献,搜索用时 15 毫秒
1.
A justification is given for the validity of a nonadiabatic surface hopping Herman-Kluk (HK) semiclassical initial value representation (SC-IVR) method. The method is based on a propagator that combines the single surface HK SC-IVR method [J. Chem. Phys. 84, 326 (1986)] and Herman's nonadiabatic semiclassical surface hopping theory [J. Chem. Phys. 103, 8081 (1995)], which was originally developed using the primitive semiclassical Van Vleck propagator. We show that the nonadiabatic HK SC-IVR propagator satisfies the time-dependent Schrodinger equation to the first order of variant Planck's over 2pi and the error is O(variant Planck's over 2pi(2)). As a required lemma, we show that the stationary phase approximation, under current assumptions, has an error term variant Planck's over 2pi(1) order higher than the leading term. Our derivation suggests some changes to the previous development, and it is shown that the numerical accuracy in applications to Tully's three model systems in low energies is improved. 相似文献
2.
Pollak E 《The Journal of chemical physics》2007,127(7):074505
In this paper, we consider a dissipative system in which the system is coupled linearly to a harmonic bath. In the continuum limit, the bath is defined via a spectral density and the classical system dynamics is given in terms of a generalized Langevin equation. Using the path integral formulation and factorized initial conditions, it is well known that one can integrate out the harmonic bath, leaving only a path integral over the system degrees of freedom. However, the semiclassical initial value representation treatment of dissipative systems has usually been limited to a discretized treatment of the bath in terms of a finite number of bath oscillators. In this paper, the continuum limit of the semiclassical initial value representation is derived for dissipative systems. As in the path integral, the action is modified with an added nonlocal term, which expresses the influence of the bath on the dynamics. The first order correction term to the semiclassical initial value approximation is also derived in the continuum limit. 相似文献
3.
A general approach to mapping a discrete quantum mechanical problem by a continuous Hamiltonian is presented. The method is based on the representation of the quantum number by a continuous action variable that extends from -infinity to infinity. The projection of this Hilbert space onto the set of integer quantum numbers reduces the Hamiltonian to a discrete matrix of interest. The theory allows the application of the semiclassical methods to discrete quantum mechanical problems and, in particular, to problems where quantum Hamiltonians are coupled to continuous degrees of freedom. The Herman Kluk semiclassical propagation is used to calculate the nonadiabatic dynamics for a model avoided crossing system. The results demonstrate several advantages of the new theory compared to the existing mapping approaches. 相似文献
4.
The forward-backward (FB) approximation as applied to semiclassical initial value representations (SCIVR's) has enabled the practical application of the SCIVR methodology to systems with many degrees of freedom. However, to date a systematic representation of the exact quantum dynamics in terms of the FB-SCIVR has proven elusive. In this paper, we provide a new derivation of a forward-backward phase space SCIVR expression (FBPS-SCIVR) derived previously by Thompson and Makri [Phys. Rev. E 59, R4729 (1999)]. This enables us to represent quantum correlation functions exactly in terms of a series whose leading order term is the FBPS-SCIVR expression. Numerical examples for systems with over 50 degrees of freedom are presented for the spin boson problem. Comparison of the FBPS-SCIVR with the numerically exact results of Wang [J. Chem. Phys. 113, 9948 (2000)] obtained using a multiconfigurational time dependent method shows that the leading order FBPS-SCIVR term already provides an excellent approximation. 相似文献
5.
The linearized approximation to the semiclassical initial value representation (LSC-IVR) has been used together with the thermal Gaussian approximation (TGA) (TGA/LSC-IVR) [J. Liu and W. H. Miller, J. Chem. Phys. 125, 224104 (2006)] to simulate quantum dynamical effects in realistic models of two condensed phase systems. This represents the first study of dynamical properties of the Ne(13) Lennard-Jones cluster in its liquid-solid phase transition region (temperature from 4 to 14 K). Calculation of the force autocorrelation function shows considerable differences from that given by classical mechanics, namely that the cluster is much more mobile (liquidlike) than in the classical case. Liquid para-hydrogen at two thermodynamic state points (25 and 14 K under nearly zero external pressure) has also been studied. The momentum autocorrelation function obtained from the TGA/LSC-IVR approach shows very good agreement with recent accurate path integral Monte Carlo results at 25 K [A. Nakayama and N. Makri, J. Chem. Phys. 125, 024503 (2006)]. The self-diffusion constants calculated by the TGA/LSC-IVR are in reasonable agreement with those from experiment and from other theoretical calculations. These applications demonstrate the TGA/LSC-IVR to be a practical and versatile method for quantum dynamics simulations of condensed phase systems. 相似文献
6.
A semiclassical initial value representation formulation using the Van Vleck [Proc. Natl. Acad. Sci. U.S.A. 14, 178 (1928)] propagator has been used to calculate the flux correlation function and thereby reaction rate constants. This Van Vleck formulation of the flux-flux correlation function is computationally as simple as the classical Wigner [Trans. Faraday Soc. 34, 29 (1938)] model. However, unlike the latter, it has the ability to capture quantum interference/coherence effects. Classical trajectories are evolved starting from the dividing surface that separates reactants and products, and are evolved negatively in time. This formulation has been tested on model problems ranging from the Eckart barrier, double well to the collinear H+H2. 相似文献
7.
A new class of prefactor free semiclassical initial value representations (SCIVR) of the quantum propagator is presented. The derivation is based on the physically motivated demand, that on the average in phase space and in time, the propagator obey the exact quantum equation of motion. The resulting SCIVR series representation of the exact quantum propagator is also free of prefactors. When using a constant width parameter, the prefactor free SCIVR propagator is identical to the frozen Gaussian propagator of Heller [J. Chem. Phys. 75, 2923 (1981)]. A numerical study of the prefactor free SCIVR series is presented for scattering through a double slit potential, a system studied extensively previously by Gelabert et al. [J. Chem. Phys. 114, 2572 (2001)]. As a basis for comparison, the SCIVR series is also computed using the optimized Herman-Kluk SCIVR. We find that the sum of the zeroth order and the first order terms in the series suffice for an accurate determination of the diffraction pattern. The same exercise, but using the prefactor free propagator series needs also the second order term in the series, however the numerical effort is not greater than that needed for the Herman-Kluk propagator, since one does not need to compute the monodromy matrix elements at each point in time. The numerical advantage of the prefactor free propagator grows with increasing dimensionality of the problem. 相似文献
8.
There have been quite a few attempts in recent years to provide an initial value coherent state representation for the imaginary time propagator exp(-betaH). The most notable is the recent time evolving Gaussian approximation of Frantsuzov and Mandelshtam [J. Chem. Phys. 121, 9247 (2004)] which may be considered as an expansion of the imaginary time propagator in terms of coherent states whose momentum is zero. In this paper, a similar but different expression is developed in which exp(-betaH) is represented in a series whose terms are weighted phase space averages of coherent states. Such a representation allows for the formulation of a new and simplified forward-backward semiclassical initial value representation expression for thermal correlation functions. 相似文献
9.
The authors show that a recently proposed approach [J. Chem. Phys. 123, 084103 (2005)] for the inclusion of geometric constraints in semiclassical initial value representation calculations can be used to obtain excited states of weakly bound complexes. Sample calculations are performed for free and constrained rare gas clusters. The results show that the proposed approach allows the evaluation of excited states with reasonable accuracy when compared to exact basis set calculations. 相似文献
10.
We have demonstrated the use of ab initio molecular dynamics (AIMD) trajectories to compute the vibrational energy levels of molecular systems in the context of the semiclassical initial value representation (SC-IVR). A relatively low level of electronic structure theory (HF/3-21G) was used in this proof-of-principle study. Formaldehyde was used as a test case for the determination of accurate excited vibrational states. The AIMD-SC-IVR vibrational energies have been compared to those from curvilinear and rectilinear vibrational self-consistent field/vibrational configuration interaction with perturbation selected interactions-second-order perturbation theory (VSCF/VCIPSI-PT2) and correlation-corrected vibrational self-consistent field (cc-VSCF) methods. The survival amplitudes were obtained from selecting different reference wavefunctions using only a single set of molecular dynamics trajectories. We conclude that our approach is a further step in making the SC-IVR method a practical tool for first-principles quantum dynamics simulations. 相似文献
11.
An approach for the inclusion of geometric constraints in semiclassical initial value representation calculations is introduced. An important aspect of the approach is that Cartesian coordinates are used throughout. We devised an algorithm for the constrained sampling of initial conditions through the use of multivariate Gaussian distribution based on a projected Hessian. We also propose an approach for the constrained evaluation of the so-called Herman-Kluk prefactor in its exact log-derivative form. Sample calculations are performed for free and constrained rare-gas trimers. The results show that the proposed approach provides an accurate evaluation of the reduction in zero-point energy. Exact basis set calculations are used to assess the accuracy of the semiclassical results. Since Cartesian coordinates are used, the approach is general and applicable to a variety of molecular and atomic systems. 相似文献
12.
It is shown that a semiclassical surface hopping (SH) approach provides a simple and efficient method for scattering calculations with non-spherically symmetric potentials. The calculations are performed by expanding the wave function in an angular momentum state basis. Since the potential is not spherically symmetric, the different angular states are coupled. The semiclassical SH method, which is typically used for problems with coupled electronic states, can, in principle, be employed for any coupled state problem. The particular SH method employed is known to provide highly accurate results for coupled electronic state problems. The method is tested on model two angular state problems using potential surfaces and couplings arising from a non-spherically symmetric scattering problem. The results for these model problems are in excellent agreement with exact quantum calculations. Full calculations, which are converged with regard to the number of angular basis states, are also performed for the non-spherically symmetric problem. It is shown that an approximation to the surface hopping amplitudes that simplifies the numerical implementation of the method provides results in excellent agreement with the full surface hopping calculation. 相似文献
13.
The behavior of an initial value representation surface hopping wave function is examined. Since this method is an initial value representation for the semiclassical solution of the time independent Schrodinger equation for nonadiabatic problems, it has computational advantages over the primitive surface hopping wave function. The primitive wave function has been shown to provide transition probabilities that accurately compare with quantum results for model problems. The analysis presented in this work shows that the multistate initial value representation surface hopping wave function should approach the primitive result in asymptotic regions and provide transition probabilities with the same level of accuracy for scattering problems as the primitive method. 相似文献
14.
We demonstrate that the semiclassical field-induced surface hopping (FISH) method (Mitri?et al., Phys. Rev. A: At., Mol., Opt. Phys., 2009, 79, 053416.) accurately describes the selective coherent control of electronic state populations. With the example of the strong field control in the potassium dimer using phase-coherent double pulse sequences, we present a detailed comparison between FISH simulations and exact quantum dynamics. We show that for short pulses the variation of the time delay between the subpulses allows for a selective population of the desired final state with high efficiency. Furthermore, also for pulses of longer time duration, when substantial nuclear motion takes place during the action of the pulse, optimized pulse shapes can be obtained which lead to selective population transfer. For both types of pulses, the FISH method almost perfectly reproduces the exact quantum mechanical electronic population dynamics, fully taking account of the electronic coherence, and describes the leading features of the nuclear dynamics accurately. Due to the significantly higher computational efficiency of FISH as a trajectory-based method compared to full quantum dynamics simulations, this offers the possibility to theoretically investigate control experiments on realistic systems including all nuclear degrees of freedom. 相似文献
15.
It is shown how quantum mechanical time correlation functions [defined, e.g., in Eq. (1.1)] can be expressed, without approximation, in the same form as the linearized approximation of the semiclassical initial value representation (LSC-IVR), or classical Wigner model, for the correlation function [cf. Eq. (2.1)], i.e., as a phase space average (over initial conditions for trajectories) of the Wigner functions corresponding to the two operators. The difference is that the trajectories involved in the LSC-IVR evolve classically, i.e., according to the classical equations of motion, while in the exact theory they evolve according to generalized equations of motion that are derived here. Approximations to the exact equations of motion are then introduced to achieve practical methods that are applicable to complex (i.e., large) molecular systems. Four such methods are proposed in the paper--the full Wigner dynamics (full WD) and the second order WD based on "Wigner trajectories" [H. W. Lee and M. D. Scully, J. Chem. Phys. 77, 4604 (1982)] and the full Donoso-Martens dynamics (full DMD) and the second order DMD based on "Donoso-Martens trajectories" [A. Donoso and C. C. Martens, Phys. Rev. Lett. 8722, 223202 (2001)]--all of which can be viewed as generalizations of the original LSC-IVR method. Numerical tests of the four versions of this new approach are made for two anharmonic model problems, and for each the momentum autocorrelation function (i.e., operators linear in coordinate or momentum operators) and the force autocorrelation function (nonlinear operators) have been calculated. These four new approximate treatments are indeed seen to be significant improvements to the original LSC-IVR approximation. 相似文献
16.
Semiclassical initial value representation calculations are performed for the constrained water dimer in Cartesian coordinates. The study represents the first application of a previously reported method [Issak and Roy, J. Chem. Phys. 123, 084103 (2005); 126, 024111 (2007)] to a molecular cluster. Bound state energies are calculated for a dimer of rigid water molecules (H2O)2 as well as its deuterated form (D2O)2. The results show that the approach fares well with respect to accuracy in capturing quantum effects in intermolecular interactions. 相似文献
17.
A recently formulated continuum limit semiclassical initial value series representation (SCIVR) of the quantum dynamics of dissipative systems is applied to the study of vibrational relaxation of model harmonic and anharmonic oscillator systems. As is well known, the classical dynamics of dissipative systems may be described in terms of a generalized Langevin equation. The continuum limit SCIVR uses the Langevin trajectories as input, albeit with a quantum noise rather than a classical noise. Combining this development with the forward-backward form of the prefactor-free propagator leads to a tractable scheme for computing quantum thermal correlation functions. Here we present the first implementation of this continuum limit SCIVR series method to study two model problems of vibrational relaxation. Simulations of the dissipative harmonic oscillator system over a wide range of parameters demonstrate that at most only the first two terms in the SCIVR series are needed for convergence of the correlation function. The methodology is then applied to the vibrational relaxation of a dissipative Morse oscillator. Here, too, the SCIVR series converges rapidly as the first two terms are sufficient to provide the quantum mechanical relaxation with an estimated accuracy on the order of a few percent. The results in this case are compared with computations obtained using the classical Wigner approximation for the relaxation dynamics. 相似文献
18.
We present a surface hopping method for chemical reaction in solution based on diabatic representation, where quantum mechanical time evolution of the vibrational state of the reacting nuclei as well as the reaction-related electronic state of the system are traced simultaneously together with the classical motion of the solvent. The method is effective in describing the system where decoherence between reactant and product states is rapid. The diabatic representation can also give a clear picture for the reaction mechanism, e.g., thermal activation mechanism and a tunneling one. An idea of molecular orbital theory has been applied to evaluate the solvent contribution to the electronic coupling which determines the rate of reactive transition between the reactant and product potential surfaces. We applied the method to a model system which can describe complex chemical reaction of the real system. Two numerical examples are presented in order to demonstrate the applicability of the present method, where the first example traces a chemical reaction proceeded by thermal activation mechanism and the second examines tunneling mechanism mimicking a proton transfer reaction. 相似文献
19.
Zhan L Piwowar B Liu WK Hsu PJ Lai SK Chen JZ 《The Journal of chemical physics》2004,120(12):5536-5542
We introduce a new optimization algorithm that combines the basin-hopping method, which can be used to efficiently map out an energy landscape associated with minima, with the multicanonical Monte Carlo method, which encourages the system to move out of energy traps during the computation. As an example of implementing the algorithm for the global minimization of a multivariable system, we consider the Lennard-Jones systems containing 150-185 particles, and find that the new algorithm is more efficient than the original basin-hopping method. 相似文献
20.
Minima hopping: an efficient search method for the global minimum of the potential energy surface of complex molecular systems 总被引:1,自引:0,他引:1
Goedecker S 《The Journal of chemical physics》2004,120(21):9911-9917
A method is presented that can find the global minimum of very complex condensed matter systems. It is based on the simple principle of exploring the configurational space as fast as possible and of avoiding revisiting known parts of this space. Even though it is not a genetic algorithm, it is not based on thermodynamics. The efficiency of the method depends strongly on the type of moves that are used to hop into new local minima. Moves that find low-barrier escape-paths out of the present minimum generally lead into low energy minima. 相似文献